FILE NOTATIONS

ntered in NID File action Map Pinned ad Ladoxed	*******	Checked by Chief Approval Letter Disapproval Letter
COMPLETION DATA:		
Well Completed	•••••	Location Inspected
OS PA.		Bond released State or Fee Land
	LOGS FILED	
iller's Log		
" Lotric Logs (No.)		
AC SCRIC GR	Lat Mi-	GR-N Micro

May 10, 1976

State of Utah Division of Oil, Gas & Mining 1588 West, North Temple Salt Lake City, Utah 84116

Attn: Mr. Cleon B. Feight, Director

Re: Colorado Energetics, Fuelco, Impel

Weber Coal Co. 13-3 SW/4 Sec. 3-T2N-R5E Summit County, Utah

Dear Jack:

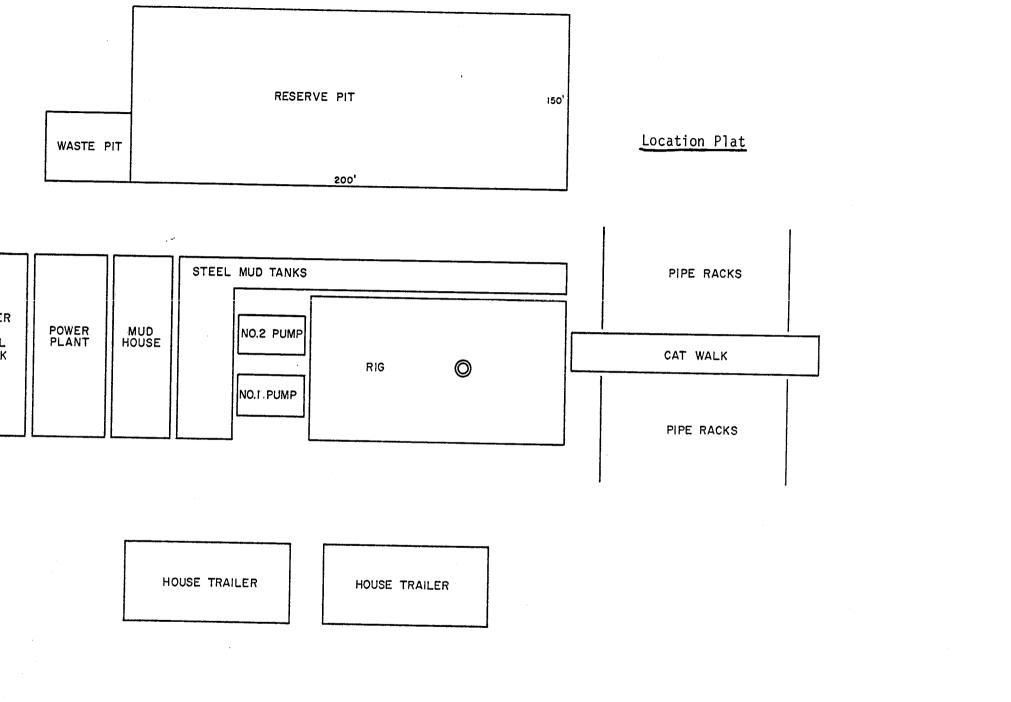
Enclosed please find our Application for Permit to Drill the referenced well. I believe all of the information required on/with that form is included.

With regard to the "12 point environmental statement", please accept the following:

- 1. A plat showing all existing roads in the immediate area. See attached U.S.G.S. topo map.
- 2. A plat showing all planned access roads for the project. See attached U.S.G.S. topo map.
- 3. A plat showing all existing wells in the immediate area. There are no existing oil wells within 5 miles of the staked location. Mountain Fuel Supply has 2 gas storage wells in Section 10, which are about 2400' deep.
- 4. A plat showing all existing lateral roads to well locations. See Attached U.S.G.S. topo map.
- 5. A plat showing location of tank battery and flowlines.
 If these facilities are required, they will be situated on the NW corner of the location.
- 6. A plat showing location of any water supply well, if one is used. Water to be obtained from "North Narrows Ditch Company". Energetics has purchased shares in this company.

- 7. A plan for the disposal of all waste materials.
 All waste to be disposed of in on site waste pit.
- 8. A plat showing the location of all camps, if it is a camp job. N/A
- 9. A plat showing any air strips to be used or constructed. $\ensuremath{\mathsf{N/A}}$
- 10. A plat showing the layout of all rig components such as pits, burn pits, pipe racks, water storage, fuel storage, etc. See attached plat.
- 11. A plan for the restoration of the drillsite after drillings and completion operations are finished.
 Upon completion of this operation, the land will be restored as close as possible to the original with reseeding as required.
- 12. Any other pertinent information which applies to the particular job.

 This site is located on a relatively flat spot at the base of a 200' cliff which runs northeast through the area. The ground slopes upward from the west and northwest side of our location towards the cliff. The vegetation in the area is composed of some native grasses and a few cedar trees. There are large areas of undesirable sage brush on the intended site. Please note that the proposed road into the location will go around behind a hill to the east and north of the location to keep the road out of site from the county road to the south. Due to the cliff to the west and northwest and the underground coal mines to the east and southeast and the hillside to the south, we think this is the only logical spot to place this site in this section.


Yours very truly,

ENERGETICS, INC.

R. C. Turtle

Operations Manager

RCT/jh Enc/

STATE OF UTAH

SUBMIT IN TRIPLICATE* (Other instructions on

Form approved. Budget Bureau No. 42-R1425.

018.34

1 = 1

Y

UNITED STATES

TRADEMENT OF THE INTERIOR

DEPARTMENT OF THE INTERIOR 5. LEASE DESIGNATION AND SERIAL NO. **GEOLOGICAL SURVEY** 6. IF INDIAN, ALLOTTEE OR TRIBE NAME APPLICATION FOR PERMIT TO DRILL, DEEPEN, OR PLUG BACK 1a. TYPE OF WORK UNIT AGREEMENT NAME DRILL X **DEEPEN** PLUG BACK [] b. TYPE OF WELL 011-MULTIPLE ZONE GAS WELL SINGLE S. FARM OR LEASE NAME WELL X OTHER 2. NAME OF OPERATOR Weber Coal Co. 9. WELL NO. Colorado Energetics, Inc.- Fuelco - Impel 13+3 10. FIELD AND POOL, OR WILDCAT 333 West Hampden Ave., Englewood, Colorado 80110
LOCATION OF WELL (Report location clearly and in accordance with any State requirements.*) Unnamed 11. ABC., T., R., M., OR BLK. AND SURVEY OF AREA 500' FWL & 1400' FSL At proposed prod. zone Sec: 3-T2N-R5E 14. DISTANCE IN MILES AND DIRECTION FROM NEAREST TOWN OR POST OFFICE 12. COUNTY OR PARISH | 18. STATE Utah Summit 2 miles NE of Coalville, Utah 15. DISTANCE FROM PROPOSED*
LOCATION TO NEAREST
PROPERTY OR LEASE LINE, FT.
(Also to nearest drig, unit line, if any) 16. NO. OF ACRES IN LEASE 17. NO. OF ACRES ASSIGNED TO THIS WELL 513' 810.37 160 18. DISTANCE FROM PROPOSED LOCATION*
TO NEAREST WELL, DRILLING, COMPLETED,
OR APPLIED FOR, ON THIS LEASE, FT. 19. PROPOSED DEPTH 20. ROTARY OR CABLE TOOLS 16,500' Weber Rotary 22. APPROX. DATE WORK WILL START* None 21. ELEVATIONS (Show whether DF, RT, GR, etc.) . -5981' Ungraded G.L. 6-1-76 23. PROPOSED CASING AND CEMENTING PROGRAM SETTING DEPTH SIZE OF HOLE SIZE OF CASING WEIGHT PER FOOT QUANTITY OF CEMENT 17%" 13**-**3/8" 3000' 61# Sufficient to circulate 9-5/8" 12¼" 53.5# 10.500' cement back to 8000'

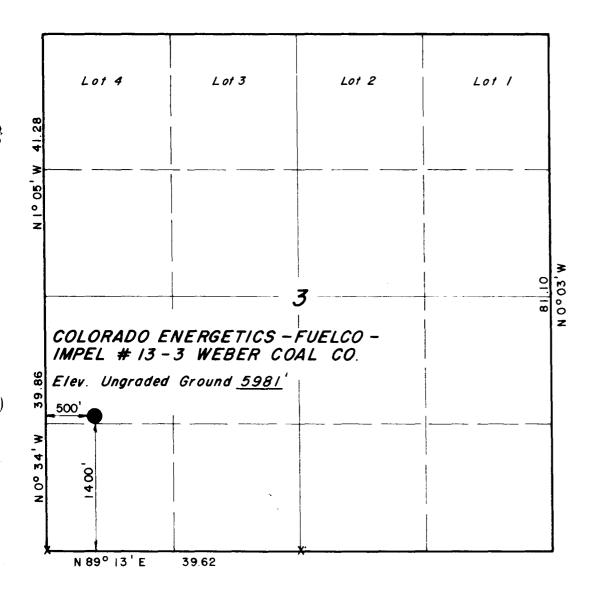
Please see attached Drilling Prognosis

IN ABOVE SPACE DESCRIBE PROPOSED PROGRAM: If proposal is to deepen or plug back, give data on present productive sone and proposal sew productive sone. If proposal is to drill or deepen directionally, give pertinent data on subsurface locations and measured and true vertical depths. Give blowout preventer program, if any.

reventer program, if any.		
signed H. C. Turtle	Operations Mana	ger May 10, 1976
(This space for Federal or State office use) PERMIT NO. 43-043-30024	APPROVAL DATE	
APPROVED BY	TITLE	PATA 3 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ENERGETICS COALVILLE NUGGET TEST DRILLING PROGNOSIS

Location: Section 3, T2N-R5E, Summit County, Utah


Proposed TD: 16,500'

G. L. Elevation: Approximately 6100'. (Not staked yet)

Desired Spud Date: June 10, 1976

- 1. Set 50' 22" conductor pipe and drill MH & RH.
- 2. MI & RU Rotary tools.
- 3. Drill 8-3/4" pilot hole to 3000'.
- 4. Ream 8-3/4" hole to 17½".
- 5. Set 3000' 13-3/8" 61#/ft. K-55 ST&C casing and cement same to surface.
- 6. Install 12" 900 BOP. Test BOP & 13-3/8" casing to 1500 psi.
- 7. Drill $12\frac{1}{4}$ " hole to approx. 10,500'. Log well per well site geologists instruction.
- 8. Set 9-5/8" tapered casing to 10,500' or as necessary.
- 9. Cement 9-5/8" casing to top of salt section approx. 8000'.
- 10. Install 10" 900 BOP. Test BOP & 9-5/8" casing to 2000 psi.
- 11. Drill $8\frac{1}{5}$ " hole to T.D. approx. 16,500'.
- 12. Core, test, log and evaluate as determined by on site geologist.
- 13. If well is deemed commercial, run 7" liner from 10,200-16,500'. Install External Casing Packer(s) as necessary on 7" liner and cement liner top to bottom.
- 14. If well is deemed a dry hole:
 - (a) Plug back to bottom of 9-5/8" casing as directed by State of Utah
 - (b) Determine free point of 9-5/8" casing. Shoot same at free point and recover
 - (c) P & A per State of Utah directions.

T2N, R5E, S.L.B.&M.

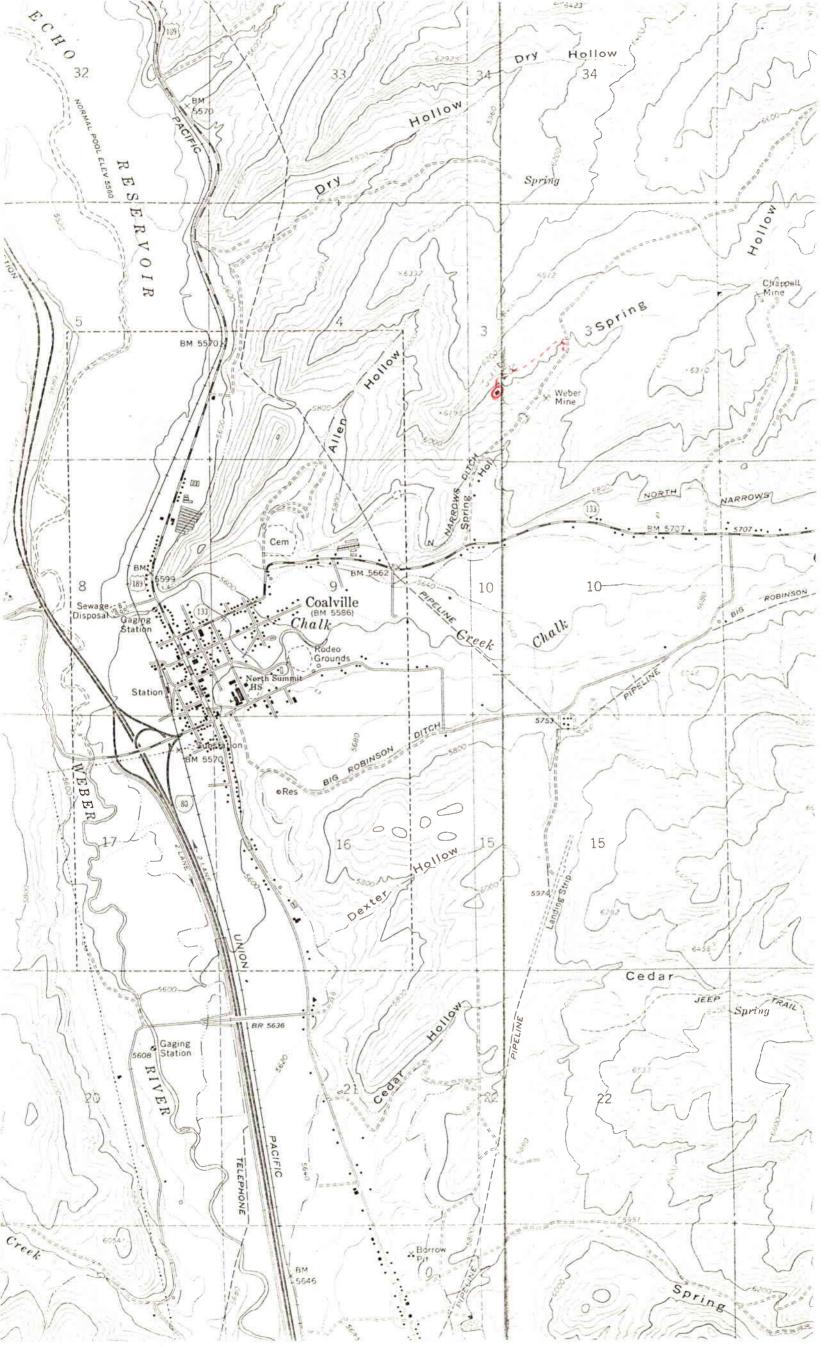
X = Section Corners Located (Brass Caps)

ENERGETICS INCORPORATED

Well location located as shown in the NW I/4 SW I/4 Section 3, T2N, R5E, S.L.B.&M. Summit County, Utah.

CERTIFICATE

THIS IS TO CERTIFY THAT THE ABOVE PLAT WAS PREPARED FROM FIELD NOTES OF ACTUAL SURVEYS MADE BY ME OR UNDER MY SUPERVISION AND THAT THE SAME ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.


REGISTERED TAND SURVEYOR REGISTRATION Nº 2454

Revised: 4-24-76

UINTAH ENGINEERING & LAND SURVEYING
P.O. BOX Q - 110 EAST - FIRST SOUTH
VERNAL, UTAH - 84078

STATE OF UTAH

SCALE	DATE
1" = 1000'	4 - 22 - 76
PARTY L.D.T, R.K. J.W.	REFERENCES GLO Plat
WEATHER	FILE
Fair	ENERGETICS INC

FILE NOTATIONS

Date:		Miy.	13 -							
Operator:			likac	lo Gu	rgetil		ur,			
Well No:	<u> </u>		les.	Ceal	Co.	13-3				
Location:	Sec.	3	TRN	R. 57-	County	Su	MAL	it		
File Prepa						on N.I.D]]		
Checked By		tive Ass:	istant: .	Aw	<i>(</i>					
	Remarl		Mined La	ınd Coordi	ınator:	/jk	Pat	m = 1 =	Political	
	Remar				•					
Direc		7								
	Remar	ks: 								
Include Wi	ithin <i>l</i>	Approval	Letter:							
Bond	Requi	red			Survey	Plat Req	uired [Α.	
Order	r No				Blowou [*]	t Prevent	ion Equi	ipment		
Rule	C-3(c)) Topogra	aphical e a 660' n	exception/ radius of	company of proposed	owns or c	ontrols	acreag	e TOPO GOO	1 Fr.
Ο, Κ.	Rule	C-3	\Box		O.K.	In	Uni	it 🗀		
Other	r:									
					Lette	er Writte	n			

May 17, 1976

Colorado Energetics, Inc. 333 West Hampden Avenue Englewood, Colorado 80110

> Re: Well No. Weber Coal #1 Sec. 3, T. 2 N, R. 5 E, Summit County, Utah

Gentlemen:

Insofar as this office is concerned, approval to drill the above referred to well is hereby granted in accordance with Rule C-3(c), General Rules and Regulations and Rules of Practice and Procedure.

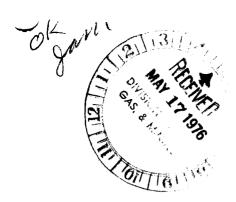
Should you determine that it will be necessary to plug and abandon this well, you are hereby requested to immediately notify the following:

PATRICK L. DRISCOLL - Chief ₽etroleum Engineer

HOME: 582-7247 OFFICE: 533-5771

Enclosed please find Form OGC-8-X, which is to be completed whether or not water sands (aquifers) are encountered during drilling.

The API number assigned to this well is 43-043-30024.


Very truly yours,

DIVISION OF OIL, GAS, AND MINING

CLEON B. FEIGHT DIRECTOR

CBF:sw

May 14, 1976

State of Utah Division of Oil, Gas and Mining 1588 West, North Temple Salt Lake City, Utah 84116

Attn: Mr. Pat Driscoll:

Re: Colo. Energetics, Fuelco, Impel

Weber Coal Company 13-3 Sec. 3-T2N-R5E, Summit County

Dear Sir:

You will note that in our "Application for Permit to Drill" the noted well, we have staked the location 80' north of the legal location. Please be advised that we are requesting an exception to the 500' rule on the grounds of difficult topography at the legal spot.

If we spotted the stake @1320' FSL, it would mean approximately 30' of fill would be required to level the location on the south. This would also require additional"cuts" to obtain the required fill dirt.

We hope that the exception can be granted for the noted reason of "topography".

Yours very truly,

ENERGETICS, INC.

R. C. Turtle

Operations Manager

RCT/jh

CIRCULATE TO:

June 8, 1976

Mr. Cleon B. Feight, Director State of Utah Division of Oil, Gas, and Mining 1588 West North Temple Salt Lake City, Utah 84116

Dear Mr. Feight:

Please be advised that the correct name to the well we are drilling in Section 3, T2N-R5E, Summit County, Utah is the Weber Coal Co. 13-3. Enclosed in a copy of the Application to Drill for verification. Please change your records for future reference. Thank you.

Sincerely,

ENERGETICS, INC.

Jo Hansen

Operations Secretary

/jh Enc/ Well nele

OIL, GAS, AND MINING BOARD

GUY N. CARDON

CHARLES R. HENDERSON

ROBERT R. NORMAN

JAMES P. COWLEY

HYRUM L. LEE

Chairman

GORDON E, HARMSTON

CALVIN L. RAMPTON

Governor

Executive Director NATURAL RESOURCES

> **CLEON B. FEIGHT** Director

STATE OF UTAH

DEPARTMENT OF NATURAL RESOURCES

DIVISION OF OIL, GAS, AND MINING 1588 West North Temple Salt Lake City, Utah 84116 (801) 533-5771

May 17, 1976

Colorado Energetics, Inc. 333 West Hampden Avenue Englewood, Colorado 80110

Re:

Well No. Weber Coal #

Sec. 3, T. 2 N, R. 5 E, Summit County, Utah

Gentlemen:

Insofar as this office is concerned, approval to drill the above referred to well is hereby granted in accordance with Rule C-3(c), General Rules and Regulations and Rules of Practice and Procedure.

Should you determine that it will be necessary to plug and abandon this well, you are hereby requested to immediately notify the following:

PATRICK L. DRISCOLL - Chief Petroleum Engineer

HOME: 582-7247 OFFICE: 533-5771

Enclosed please find Form OGC-8-X, which is to be completed whether or not water sands (aquifers) are encountered during drilling.

The API number assigned to this well is 43-043-30024.

Very truly yours,

DIVISION OF OIL, GAS, AND MINING

CLEON B. FEIGHT

DIRECTOR

CBF:sw

CIRCULATE: TO:

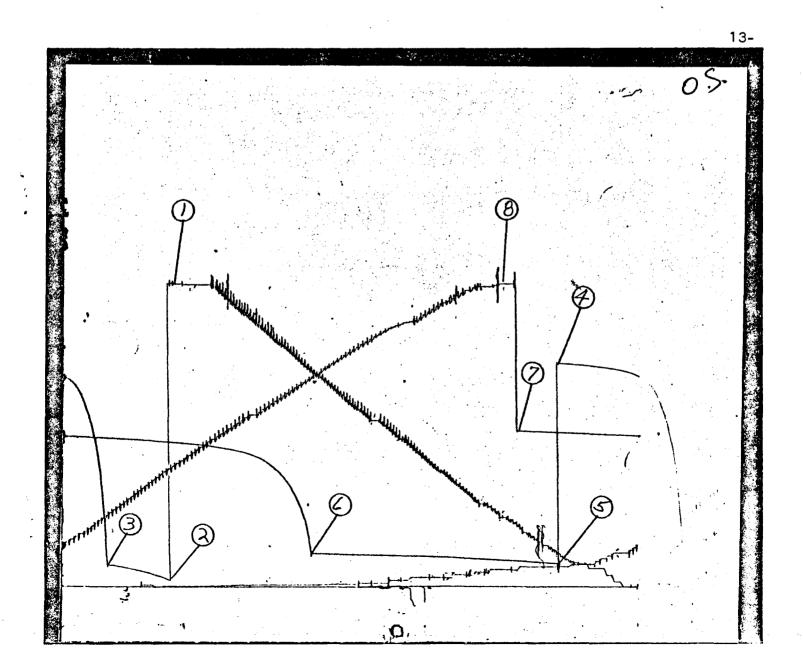
DIRECTOR -PETROU THE NEER --M:NE ADM SISTANT -ALL -RETURN TO.

JOHNSTON Schlumberger

technical report

	SURFACE INFO	RMATION	1		K	NIPMENT	A HOLE D	ATA
Description (Not	ad Slaw)	Time	Pressure (P.S.I.G.)	Syrtees Challe	Type Test	M	F.E. OPEN	HOLE
•			(.c	BUBBLE	Fermation Took	T1	WIN CREEK	
Opened Tool		1742	-	HOSE	Elevation		002	Ft.
SLIG	HT BLOW, 1" IN WATER				Not Productive	Interval2	20	Pi
STEADY	BLOW, 24", IN WATER	1747	-	_	Estimated Para	olty	·	%
	ISED TO 32 IN WATER	1800	-				ELLY BUSHI	NG
	FOR INITIAL SHUT-IN	1812 1912	-		Total Depth		0905 1/2"	
	ED SHUT-IN	1912	-	- 11	Main Holo/Cos		1/2	
	NED TOOL	1313	<u> </u>		Rat Hole/Liner	Size	901	2 7/8"
	TE" IN WATER	1920		11	Drill Coller Ler	19th9	80' I.D.	3 1/4"
	REMAINED SAME FOR	1.020			Drill Pipe Long	• .	0567 & 106	36
	NCE OF TEST				Packer Depth(s))		
	FOR FINAL SHUT-IN	2113	-	- 11				
020020	(1-30-77)	1			11 "		N EVALUAT	
PULLED	PACKER LOOSE	001.3	-	-	11	MUID 34	MPLE DATA	•
					Sampler Pressur	_ 5		1910 at Surface
			·		Recovery: Cu. F			
					=0	•		
					- W	later		
					ec. M		400	
	·		<u> </u>		Tot. (Liquid es2	400	
		ļ			Grevity		'AH @	
		ļ			Gos/Oll Rollo_			a. A/M
					11			
		}	<u> </u>		!	aesi	STIVITY	CHOMBE
		-			{ 			COMMIN
Condition	on Type Amount	Process		Bottom Chake	{	_	• -	
Count		· · · · · · · · · · · · · · · · · · ·	'	5/8"	Recevery Weter	, <u> </u>	.• •,	PP
			Size			-	•	
	MUD DA	\TA			Recovery Mud		• ·,	
Mud Type	SALT POLYMER	W.	10.1		Recovery Mud (,		
	SALT POLYMER	W.	10.1	c.c.	Recovery Mud (,		
Viscosity Resist: of Mud _	SALT POLYMER 40 .08 a 62	W1 Weter Le	10.1	c.c.	Recovery Mud (,		
Viscosity Resist: of Mud _	SALT POLYMER 40 .08 a 62	W1 Weter Le	10.1	c.c.	Recovery Mud (,	62 · · · · · · · · · · · · · · · · · · ·	
Viceseity Resist: of Mud _ Chlorido Conton	SALT POLYMER 40 .08 a 62	W1 Weter Le	10.1	C.c. 62 *#	Recovery Mud (,		98000
Viceseity	SALT POLYMER 40 .08 @ 62 *F; 98000 SCOVERY DESCRIPTION	Wt Weter Leaf Filtrate	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	, 08 Filtrate . 08	62 °F.	98000 pp.
Viceseity Resist: of Mud _ Chloride Centen BI 	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt Water Lea	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	, 08 Filtrate . 08	62 °p. 62 °p. 62 °p.	98000 pp
Viceseity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	. 08 Filtrete . 08	62 °,. 62 °,. 62 °,. 1 64 .09 68	98000 pp. cost. PPs. 97,000
Viceseity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	. 08 Filtrate . 08 API GRAVITY . °F.	62 °F. 62 °F. 62 °F. 64 • 64 69 • 68	98000 •g. 97,000 •g. 98,000
Viceseity Resist: of Mud _ Chloride Centen BI 	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	. 08 Filtrate . 08 API GRAVITY . °F °F °F.	62 °F. 62 °F. 62 °F. 64 °F.	98000 •p. 97,000 •p. 98,000 •p. 98,000
Viscosity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	, 08 . 08 . 08 . 08 . 08 . 08 . 08 . 08 .	62 °F. 62 °F. acsistivin 1 • 64 .09 • 68	98000 •p. 97,000 •p. 98,000 •p. 98,000 •p. •p. •p. •p. •p.
Viscosity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	, 08 - 08 - 08 - 08 - 08 - 08 - 08 - 08 -	62 °F. 62 °F. 62 °F. 62 °F.	98000 pp
Viscosity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample		62 °F. 62 °F. 62 °F. 62 °F.	98000 •p. 97,000 •p. 98,000 •p. 98,000 •p. •p. •p. •p. •p.
Viceseity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	, 08 - 08 - 08 - 08 - 08 - 08 - 08 - 08 -	62 °F. 62 °F. 62 °F. 62 °F.	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g.
Viceseity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	Wt	10.1 6.0 .08 @	C.c. 62 *#	Recovery Mud I Mud Pit Sample Mud Pit Sample	, 08 - 08 - 08 - 08 - 08 - 08 - 08 - 08 -	62 °F. 62 °F. 62 °F. 62 °F.	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g.
Viceseity	SALT POLYMER 40 .08 6 62 .98000 SCOVERY DESCRIPTION NG MUD NG MUD	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FPM % OIL % WAT	Recovery Mud I Mud Pir Sample Mud Pir Sample	, 08 . 08 . 08 . 08 . 08 . 08 . 08 . 08 .	62 °F. 62 °F. 62 °F. 62 °F.	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g.
Viceseity	SALT POLYMER 40 .08 62 F, 98000 COVERY DESCRIPTION NG MUD	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FPM % OIL % WAT	Recovery Mud I Mud Pir Sample Mud Pir Sample	, 08 . 08 . 08 . 08 . 08 . 08 . 08 . 08 .	62 °F. 62 °F. 62 °F. 62 °F.	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g.
Viscosity	SALT POLYMER 40 .08 62 7, 98000 ROOVERY DESCRIPTION NG MUD NG MUD 333 WEST HAMPTON AVE	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FPM % OIL % WAT	Recovery Mud I Mud Pir Sample Mud Pir Sample		62 °, 62 °, 62 °, 62 °, 62 °, 62 °, 62 °, 64 °, 64 °, 68 °,	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g. •g.
Viscosity	SALT POLYMER 40 .08 62 1, 69 98000 ROOVERY DESCRIPTION NG MUD NG MUD 333 WEST HAMPTON AVE	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FM % OIL % WAT	Recovery Mud I Mud Pit Sample Mud Pit Sample TER % OTHERS		62 °F. 62 °F. 62 °F. 62 °F.	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g. •g.
Viscosity	SALT POLYMER 40 .08 62 1, 69 98000 SCOVERY DESCRIPTION NG MUD NG MUD 333 WEST HAMPTON AVE ENERGETICS, INC. WEBER COAL #13-3	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FM % OIL % WAT	Recovery Mud I Mud Pir Sample Mud Pir Sample		62 °F. 62 °F. 62 °F. 1	98000 •g. 97,000 •g. 98,000 •g. 98,000 •g. •g. •g. •g.
Viscosity	SALT POLYMER 40 .08 62 1, 69 98000 ROOVERY DESCRIPTION NG MUD NG MUD 333 WEST HAMPTON AVE	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FPM ** OIL ** WAT ENGLEWOOD,	Recovery Mud I Mud Pit Sample Mud Pit Sample TER % OTHERS		62 °, 62 °, 62 °, 62 °, 62 °, 62 °, 62 °, 64 °, 64 °, 68 °,	98000 pp
Resist: of Mud _ Chlorido Conten DRILLII DRILLII Remarks: Address Company Well Test Interval	SALT POLYMER 40 .08 62 1, 69 98000 ROOVERY DESCRIPTION NG MUD NG MUD SERVERY SERVERY	PEET 1131 190	10.1 6.0 .08 @	C.C. 62 *F FPM * OIL * WAT ENGLEWOOD,	Recovery Mud I Mud Pit Sample Mud Pit Sample TER % OTHERS		62 °F. 62 °F. 62 °F. 86345TIVITY 1	98000 pp. Call. Food 9, 97,000 9, 98,000 9, 98, 000 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
Resist: of Mud _ Chlorido Conten DRILLII DRILLII Remarks: Remarks: Company Well Test Interval County County County	SALT POLYMER 40 .08 62 1, 69 98000 SCOVERY DESCRIPTION NG MUD NG MUD 333 WEST HAMPTON AVE ENERGETICS, INC. WEBER COAL #13-3	We were less of Filtrate	10.1 6.0 .08 @	C.C. 62 *F FPM * OIL * WAT ENGLEWOOD,	Recovery Mud I Mud Pit Sample Mud Pit Sample TER 9. OTHERS COLORADO SEC. 3 - 7		62 °F. 62 °F. 62 °F. 0 62 °F. 0 64 .09 • 68 0 • • • • • • • • • • • • • • • • • •	98000 ppm *F. 97,000 *F. 98,000 *F. 98,000 *F. *F. *F. *F.

BOTTOM HOLE PRESSURE AND TIME DATA


INSTRUMENT NO.: J-544

CAPACITY (P.S.I.): 9000# DEPTH 10648 FT.

PORT OPENING: OUTSIDE BOTTOM HOLE TEMP.: 208°F. FIELD REPORT NO. 14388 C

DESCRIPTION	LABELED POINTS	PRESSURE (P.S.I.)	GIVEN TIME	COMPUTED TIME
INITIAL HYDROSTATIC MUD	1	5641.4		
INITIAL FLOW (1)	2	150.7		
INITIAL FLOW (2)	3	423.8	. 30	
INITIAL SHUT-IN	4	4169.3	60	
SECOND FLOW (1)		Ÿ		
SECOND FLOW (2)				
SECOND SHUT-IN				
FINAL FLOW (1)	5	456.8		, , , , , , , , , , , , , , , , , , ,
FINAL FLOW (2)	6	640.2	120	•
FINAL SHUT-IN	7	2915.3	180	
FINAL HYDROSTATIC MUD	8	5641.4		

REMARKS:

P.O. BOX 36369 . HOUSTON, TEXAS

CONFIRMATION OF TECHNICAL REPORT DISTRIBUTION

CUSTOMER ENERGETICS, INC. FIELD REI	PORT NO. 14388 C DATE 1-29-77
COMPANY SAME LEASE	WEBER COAL WELL NO. 13-3
COUNTY SUMMIT STATE WITH	FIELD WILD CAT
JOHNSTON TESTERS HAS BEEN REQUESTED TO FURNISH THIS DISTRIBUTION OF TECHNICAL REPORTS WILL BE USE NOTIFIED.	ALL TESTS ON THIS WELL
1 TECHNICAL REPORT (S) FUELCO - FUEL RESOURCES DEVEL. CO.	1 TECHNICAL REPORT (S) TERENCE L. BRITT
550 - 15TH STREET	3280 BERNADA DRIVE
DENVER, COLORADO 80202	SALT LAKE CITY, UTAH 84117
1TECHNICAL REPORT (S)	1 TECHNICAL REPORT (S)
3-M MINNESOTA MINING & MFG. CO.	IMPEL CORPORATION 600 METROBANK BUILDING
P.O. BOX 33327 ST. PAUL; MINNESOTA 55133	475 - 17TH STREET
ATTN: MR PAUL JOHNSON	DENVER COLORADO 80202
1 TECHNICAL REPORT (S) PACIFIC POWER & LIGHT	1 TECHNICAL REPORT (S)
PUBLIC SERVICE BUILDING	315 MIDLAND TOWER BUILDING
PORTLAND, OREGON 97204	р.о. вох 2608
ATTN: MR GARY BOSHEARS	MIDLAND, TEXAS 79701
1 TECHNICAL REPORT (S) PASCO - SINCLAIR OLL CORP. P.O. BOX 1677 ENGLEWOOD, COLORADO 80110 ATTN: MR DAVE DUBLER	TECHNICAL REPORT (S) BROWNLIE, WALLACE, ARMSTRONG, BANDER SULTE 1420 1660 LINCOLN STREET DENVER, COLORADO 80203
1 TECHNICAL REPORT (S)	1TECHNICAL REPORT (S)
STATE OF UTAH	BERCHMAN J. MARY
DIVISION OF OIL & GAS & MINING	1010 PERE MARQUETTE BUILDING
1588 WEST N. TEMPLE SALT LAKE CITY, UTAH 84116	NEW ORLEANS, LOUISIANA 70112
1	2
ENERGETICS, INC.	AMOCO PROD. COMPANY
333 WEST HAMPDEN AVE SUITE 1010	SECURITY LIFE BUILDING
englewood, colorado 80110	denver, colorado 80202
	ATTUAL DETU DALMONT

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

COLO. ENERGETICS FUELCO IMPEL FORMATION : NUGGET

NO. 13-3 WEBER COAL CO.

WILDCAT

SUMMIT COUNTY

DRLG. FLUID: WATER BASE MUD

: NY SW SEC 3 T2N-R5W LOCATION

STATE : UTAH

: 2/13/77 DATE

PAGE NO.

FILE NO. : RP-4-3956-01

ANALYSTS : BOWEN ELEVATION: 6002 KB

CONVENTIONAL CORE ANALYSIS

PRELIMINARY REPORT

SAMP.	DEPTH	PERM. TO AIR (MD) HORZ. VERTICAL	POR. FLD.	FLUID OIL	SATS. WATER	GR. DNS.	age ago up sat ano ano uni visi 450 ani sen	DESCRIPTION
1	11606 -7	0.13	9.6	1.0	71.9		SU. GY FG	
â	11607 -8	0.50	6.1	1.6	40.1		SD, GY FG	
$\tilde{3}$	11608 -9	0.07	6.7	1.5	56.7		SD, GY FG	Confidential
4	11609-10	0.09	6.1	1.7	56.6		SD, GY FG	1 tid
5	11610-11	0.04	5.2	2.0	64.1		SD, GY FG	1 antices.
6	11611-12	0.07	6.1	1.7	63.9		SD, GY FG	
7	11612-13	0.05	6.2	1.6	71.7		SD, GY FG	
8	11613-14	0.19	9.1	1.1	68.3		SD, TN FG	
9	11614-15	0.07	7.3	1.4	64.2		SO, TN FG	
10	11615-16	0.41	8.3	1.2	60.7		SD. TN FG	,
ĩı	11616717	7.2	13.1	0.7	77.2		SD. TN FG	<i>Y.</i> ————————————————————————————————————
12	11617718	4.1	12.6	9.8	69,4		SD. TN FG	
13	11618-19	32	16.9	0.5	67.5		SD. TN FG	
14	11619-20	27	14.4	0.7	69.6		SD, TN FG	<i></i>
Î5	11620-21	5.1	11.4	0.9	70.9		SD, TN FG	
, 16	11621-22	1.3	8.6	1.2	48.7		SD. TN FG	
17	11622-23	1.2	11.3	0.9	68.8		SD, TN FG	•
18	11623-24	0.47	8.0	1.2	57.2		SD, GY FG	
10	11624-25	0.23	9.1	1.1	42.8		SD, GY FG	
20	11625-26	0.04	10.3	0.9	53.2		SD, TN FG	
21	11626-27	0.13	8.9	1.1	40.0		SU: TN FG	
22	11627-28	1.6	10.6	0.9	54.7		SD. TN FG	8. 4
23	11628-29	0.07	6.2	1.6	55.4		SD, TN FG	TEFTUED
24	11629-30	0.13	8.4	1.2	51.7		SD, TN FG	FER TE
``							·	GAS, & MINING

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

PAGE NO. 1

COLO., ENERGETICS, FUELCO, IMPEL FORMATION

: NUGGET

: 2/13/77 DATE

NO. 13-3 WEBER COAL CO.

URLG. FLUID: WATER BASE MUD

FILE NO. : RP-4-3956-U1

WILDCAT

LOCATION

: NW SW SEC 5 TENTROW

ANALYSTS : BOWEN

SUMMIT COUNTY

: UTAH STATE

ELEVATION: 6002 KB

CONVENTIONAL CORE ANALYSIS

SAMP. NO. UEF	TH HORZ.	VERTICAL F	LU. OIL	D SATS. WATER	GR. UNS.		SCRIPTION
1 1166 2 1166 3 1166 4 1166 5 116 6 116 7 116 8 116 9 116 10 116 11 116 12 116 13 116 14 116 15 116 17 116 18 116 20 116 21 116 22 116 23 116	06 -7 0.13 07 -8 0.50 08 -9 0.07 09-10 0.09 10-11 0.05 11-12 0.05 13-14 0.19 14-15 0.05 15-16 0.45 15-16 0.45 15-16 0.45 15-17 7.2 17-18 4.1 18-19 32 19-20 27 18-19 32 19-20 27 18-21-22 1.3 18-21-22 1	7 3 4 3	9.6 1.6.1 1.6.7 1.6.1 1.5.2 2.6.1 1.6.2 1.6.2 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.4 0.6.9 14.4 0.6.9	6 46.1 5 50.7 7 56.6 0 64.1 7 63.9 6 71.7 1 68.3 4 64.2 2 60.7 7 77.2		SU, GY FG SU, TN FG	VF VF VF VF VF VF

CORE LABORATORIES, INC.

LAB

Petroleum Reservoir Engineering

ELEV. 6002 KB

WELL NO. 13-3 WEBER COAL CO. COUNTY SUMMIT DATE 2-13-77

_ STATE __UTAH

CORE-GAMMA CORRELATION

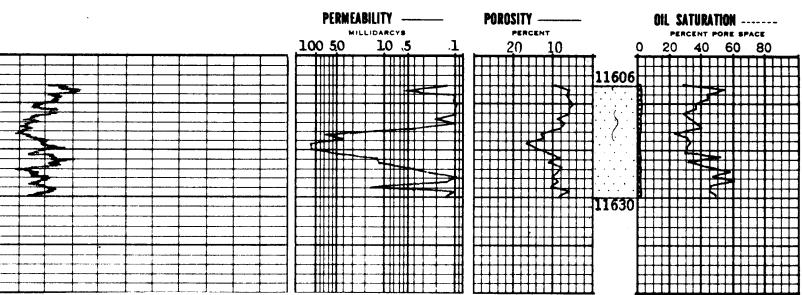
These analysis, agrining or interpretations are based on observations and material supplies of the literature whom, and far whose assistance and configurate vias, this report is made. This interpretations or agrining supressed represent the best for closersters. Inc. (all arrest and amissions appressed represent the set of the s

VERTICAL SCALE: 5" = 100'

CORE-GAMMA SURFACE LOG

LOCATION NW SW SEC 3 T2N R5W

(PATENT APPLIED FOR)


GAMMA RAY
RADIATION INCREASE

COREGRAPH

TOTAL WATER

PERCENT TOTAL WATER

80 60 40 20

CORE SUMMARY AND CALCULATED RECOVERABLE DIL

FORMATION NAME AND DEPTH INTERVAL: NUGGET 11606.0 - 11630.0 Feet					
FEET OF CORE RECOVERED FROM ABOVE INTERVAL	24	AVERAGE TOTAL WATER BATURATION: PER CENT OF PORE SPACE	60.5		
FEET DF CORE INCLUDED IN AVERAGES	24	AVERAGE CONNATE WATER BATURATION: PER CENT OF PORE SPACE			
AVERAGE PERMEABILITY: Millidarcys	3.4	DIL GRAVITY: OAPI			
PRODUCTVE CAPACITY: Millidarcy-feet	82.2	ORIGINAL SOLUTION GAS-DIL RATIO: Cubic feet per Barrel			
EVERAGE POROSITY: PER CENT	9.2	ORIGINAL FORMATION VOLUME FACTOR: BARRELS SATURATED OIL PER BARREL STOCK-TANK OIL	,		
AVERAGE RESIDUAL OIL BATURATION: Per cent of pore space	1.2	CALCULATED ORIGINAL STOCK-TANK DIL IN PLACE: BARRELS PER ACRE-FOOT			
		BARRELS PER AUNE-FOOT	i		

Calculated maximum solution gas drive recovery is barrels per acre-foot, assuming production could be continued until reservoir pressure declined to zero psig. Calculated maximum water drive recovery is barrels per acre-foot, assuming full maintenance of original reservoir pressure, 100% areal and vertical coverage, and continuation of production to 100% water cut. (Please refer to footnotes for further discussion of recovery estimates.)

(c) Calculated (e) Estimated (m) Measured

red (*) Refer to attached letter.

INTERPRETATION OF DATA

11606.0-11630.0 feet - Gas and condensate productive after successful artificial simulation.

These recovery estimates represent theoretical maximum values for solution gas and water drive. They assume that production is started at original reservoir pressure; i.e., no account is taken of production to date or of prior drainage to other areas. The effects of factors tending to reduce actual ultimate recovery, such as economic limits on oil production rates, gas-oil ratios, or water-oil ratios, have not been taken into account. Neither have factors been considered which may result in actual recovery intermediate between solution gas and complete water drive recoveries, such as gas cap expansion, gravity drainage, or partial water drive. Detailed predictions of ultimate oil recovery to specific abandonment conditions may be made in an engineering study in which consideration is given to overall reservoir characteristics and economic factors.

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc., and its officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CHEMICAL & GEOLOGICAL LABORATORIES

P. O. Box 2794 Casper, Wyoming 82601

GAS ANALYSIS REPORT

Company	Energetics, Inc.	Date	February	2, 1977	Lab. No	22541
Well No.	Weber Coal 13-3	Location				
Field	Wildcat		n	Twin Creek		
County	Summit					
State	Utah			DST No. 1		
Line pressure	psig; Sample pressure <u>0</u> ps				Chem Lab	
Remarks				····	····	
	Sampled January 30, 1977					
	Note: No pressure on conta	ainer.				
					· · · · · · · · · · · · · · · · · · ·	

Component	Mole % or Volume %	٠		
Oxygen	0			
Nitrogen	75.49			
Carbon dioxide	00			
Hydrogen sulfide				
Methane	1/ 07	Gallons		
Ethane	1 07	per MCF		
Propane	1 60	0.461		
Iso-butane	0 77	0.251		
N-butane	1 00	0.406		
Iso-pentane.	0 75	0.274		
N-pentane	A 1/	0.166		
Hexanes & higher	A = /	0.350		
Total	100.00	1.908		
	0.7			
GPM of pentanes & higher fraction	0.7	90		
Gross btu/cu. ft. @60° F. & 14.7 psia (dry basis)	4	04		
Specific gravity (calculated from analysis)		66		
Specific gravity (measured)				
Remarks: * H ₂ S = Negative to lead acetate	e paper.			
		", , , - , , , , , , , , , , , , , , , ,		

CHEMICAL & GEOLOGICAL LABORATORIES JNFIDEN

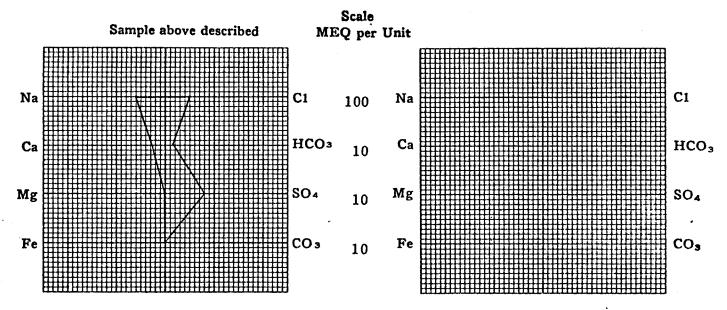
P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPOR

OPERATOR	Energetics, Inc. Weber Coal Co. 13 Wildcat Summit Utah		LOCATION	1977 LAB NO. NW SW 3-2N-5E Control manifold	
REMARKS & C	ONCLUSIONS:				
Cations Sodium Potassium Lithium Calcium Magnesium	mg/1 11046 710 467 34	meq/1 480,52 18,18 23,30 2,79	Anions Sulfate Chloride Carbonate Bicarbonate Hydroxide Hydrogen sulfide -	mg/1 2550 15700 - 1769	meq/1 53.04 442.74 29.01
7	Total Cations	524.79	Tota	1 Anions	524.79
	olids, mg/1 mg/1	31378 29720 7.1	Specific resistance @ Observed Calculated	68°F.: 0.25 0.23	ohm-meters

WATER ANALYSIS PATTERN

Scale Sample above described MEQ per Unit C1 C1 Na Na 100 HCO₃ Ca HCO₃ Ca 10 SO₄ Mg SO₄ Mg Fe COs Fe CO₃ 10


CHEMICAL & GEOLOGICAL LABORATORIES

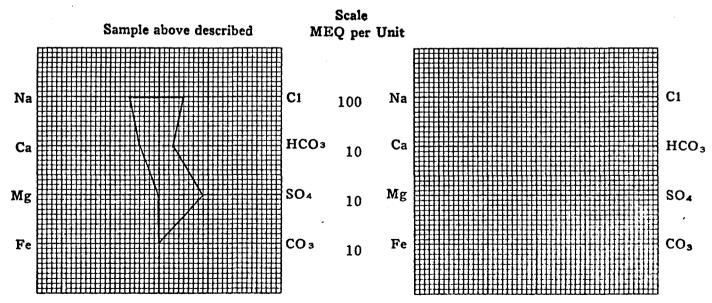
P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR	Energetics, Inc.	DATE	February 2	24, 1977 LAB NO	22702-1
WELL NO	Weber Coal 13-3	LOCATIO	ONN		
FIELD	Wildcat	FORMAT	TION		
COUNTY	Summit	INTERV	AL	10631-11630	
STATE	Utah	SAMPLE	FROM	DST No. 5 (Sam	pler)
REMARKS & C	Sample No. 5; No. 3 Sample No. 6; No. 2	2, Chloride, mg/1			00 00 00
Cations	mg/1		nions	mg/1	meq/1
Sodium		588.85 Sulfate			78.62
Potassium	494	12.65 Chloride	e	<u> </u>	535.80
		Carbona			
Omeran	531	26.50 Bicarbo	nate	1049	<u>17.20</u>
Magnesium - ·	44	3.62 Hydrox	ide	•	
Iron	• • •	Hydrog	en sulfide	*	***************************************
***************************************	Total Cations	631.62	Total	Anions	631,62
NaC1 equivalent,	olids, mg/1	35797	resistance @ 68 Observed - Calculated -	3°F.: 0.20 0.19	ohm-meters

WATER ANALYSIS PATTERN

(Na value in above graphs includes Na, K, and Li)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components


CHEMICAL & GEOLOGICAL LABORATORIES

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR	Energetics, Inc.	DATE February 24, 1977 LAB NO. 22702-2
WELL NO	Weber Coal 13-3	LOCATION
FIELD	Wildcat	FORMATION
COUNTY	Summit	INTERVAL (10631-11630)
STATE	Utah	SAMPLE FROM DST No. 5 (Sample No. 10)
_	• · · · · · · · · · · · · · · · · · · ·	
REMARKS & C		No. 6, Chloride, mg/1 27200 oride, mg/1 23800
	Sample No.10; No. 8, Ch	oride, mg/1 21200
		oride, mg/1 20600
	Sample No.12; Pit mud, (hloride, mg/l 35000
Cations Sodium Potassium - Lithium Calcium Magnesium - Iron	mg/1 meq/1 13827 601.49 526 13.47 779 38.87 28 2.30	Sulfate 4400 91.52 Chloride 19000 535.80 Carbonate 1757 28.81 Hydroxide Present
·	Total Cations 656.13	Total Anions 656.13
Total dissolved a NaC1 equivalent Observed pH	solids, mg/1	Specific resistance @ 68°F.: Observed 0.21 ohm-meters Calculated 0.19 ohm-meters

WATER ANALYSIS PATTERN

(Na value in above graphs includes Na, K, and Li)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components

Scott M. Matheson Governor

OIL, GAS, AND MINING BOARD

GUY N. CARDON

CHARLES R. HENDERSON

ROBERT R. NORMAN I. DANIEL STEWART

HYRUM L. LEE

Chairman

GORDON E. HARMSTON Executive Director, NATURAL RESOURCES

> CLEON B. FEIGHT Director

DEPARTMENT OF NATURAL RESOURCES **DIVISION OF OIL, GAS, AND MINING**

STATE OF UTAH

1588 West North Temple Salt Lake City, Utah 84116 (801) 533-5771 February 23, 1977

Colorado Energetics, Inc. 333 West Hampden Ave. Englewood, Colorado 80110

> Re: WELL NO. WEBER COAL CO. 13-3 Sec. 3, T. 2N, R. 5E

Summit County, Utah

Gentlemen:

It has been brought to my attention that the above mentioned well is "tight hole" information.

Since receipt of your "Application to Drill" dated May 10, 1976, there has nt been any request to hold this information confidential.

In order to keep our records accurate and complete, and to avoid any confusion, please write this office a letter requesting that this data be withheld from open file.

Your prompt attention to the above will be greatly appreciated.

Sincerely,

DIVISION OF OIL, GAS, AND MINING

KATHY OSTLER RECORDS CLERK

/ko

JOHNSTON Schlumberger

> technical report

COMPANY ENERGETICS, INC.

WELL WEBER COAL CO. #13-3 TEST NO.

_ COUNTY __SUMMIT

	PRMATION			EQUIPMENT & HOLE DATA
total (Baba of Elaus)	Time	Pressure (P.S.I.G.)	Surface Choke	
Description (Rate of Flow)	1	5 		Formation TestedDINWOODY
Opened Tool	1140		3/4'	
BLOW, 1/8" IN WATER				Net Productive Interval 10 Ft.
BLOW DIED	1144		1/8	Estimated Parasity 4 %
BLOW, 1/8" IN WATER	1150		1/8	
SURFACE RIPPLE	1203			
BLOW DIED	1206			
BLOW OFF BOTTOM OF BUCKET	1300			Rat note/Liner Size
MUD DROPPED IN ANNULUS	1204			Drill Collar Length 621 1.0. 1.75 Drill Pipe Length 14875 1.0. 2.6"
CLOSED TOOL	1304			
MUD STILL DROPPING	1306			Pocker Depth(s) 15496 & 15500 Fi
RE-CYCLED TOOL	1315		_ _	MULTI-FLOW EVALUATOR
STARTED OUT OF HOLE	1313			FLUID SAMPLE DATA
				Sampler Pressure 10 P.S.I.G. at Surface
				Recovery: Cu. Ft. Gas
				cc. Oil
				cc. Water
				cc. Mud 2200
		<u> </u>		Tot. Liquid cc. 2200
				Gravity*API @*I
				Gas/Oil Ratio cu. ft./bb
				RESISTIVITY CHLORIDE CONTENT
		 		
Cushion Type Amount	Pressu	**	Bottom Cha	
FRESH WATER 2948'				
LKEOU MAIEN TOTO		\$	5/ 8	
TRESH WATER		\$	ize	.5 @ 59 °F.
MUD D			3/ 6	
MUD E	Wi	8.8		Recovery Mud Filtrate 5 @ 58 °F 700
MUD E Mud Type POLYMER Viscosity 61	Wt	8.8		Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud .5 @ 58 °F;	Wi	8.8		Recovery Mud
MUD E Mud Type POLYMER Viscosity 61	Wt	8.8	58	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 55 @ 58 °F;	Wt	8.8	58	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 55 6 58 °F; Chloride Content 700 RECOVERY DESCRIPTION	Wt Water L	8.8 60 .5 @	58 5 % OIL	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 5 6 58 Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION	Wt Water L of Filtrate	8.8 60 .5 @ BARRELS	58 5 % OIL	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 55 6 58 °F; Chloride Content 700 RECOVERY DESCRIPTION	Wt Water Last of Filtrate	8.8 60 .5 @ BARRELS	58 5 % OIL	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 5 6 58 Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION	Wt Water Last of Filtrate	8.8 60 .5 @ BARRELS	58 5 % OIL	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 5 6 58 Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION	Wt Water Last of Filtrate	8.8 60 .5 @ BARRELS	58 5 % OIL	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 5 6 58 Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION	Wt Water Last of Filtrate	8.8 60 .5 @ BARRELS	58 5 % OIL	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 5 6 58 Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION	Wt Water Last of Filtrate	8.8 60 .5 @ BARRELS	58 5 % OIL	Recovery Mud
MUD E Mud Type POLYMER Viscosity 61 Resist: of Mud .5 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD	Wt Water L. g of Filtrate FEET	8.8 60 .5 @ DARRELS 17.2 51.0	58 5 % OIL 2	Recovery Mud
Mud Type POLYMER Viscosity 61 Resist: of Mud 5 6 58 Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION	Wt Water L. g of Filtrate FEET	8.8 60 .5 @ DARRELS 17.2 51.0	58 5 % OIL 2	Recovery Mud
MUD E Mud Type POLYMER Viscosity 61 Resist: of Mud .5 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD	Wt Water L. g of Filtrate FEET	8.8 60 .5 @ DARRELS 17.2 51.0	58 5 % OIL 2	Recovery Mud
MUD E Mud Type POLYMER Viscosity 61 Resist: of Mud .5 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD	Wt Water L. of Filtrate FEET	8.8 60 .5 @ 17.2 51.0	58	Recovery Mud
MUD E Mud Type POLYMER 61 Viscosity 61 Resist: of Mud 5 6 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD Remarks: UNSUCCESSFUL TES Address 333 WEST HAMPDEN	PEET 2948 8067 T; PACKER	8.8 60 .5 @ BARRELS 17.2 51.0	58 5 % OIL 2 0 AILURE.	Recovery Mud
MUD E Mud Type POLYMER 61 Viscosity 61 Resist: of Mud .5 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD Remarks: UNSUCCESSFUL TES Address 333 WEST HAMPDEN ENERGETICS, INC.	Wt Water L. g of Filtrate FEET	8.8 60 .5 @ BARRELS 17.2 51.0 SEAT F	58 5 % OIL 2 O	Recovery Mud
MUD E Mud Type POLYMER 61 Viscosity 61 Resist: of Mud .5 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD Remarks: UNSUCCESSFUL TES Address 333 WEST HAMPDEN ENERGETICS, INC.	Wt Water L. g of Filtrate FEET	8.8 60 .5 @ BARRELS 17.2 51.0 SEAT F	58 5 % OIL 2 O	Recovery Mud
MUD E Mud Type POLYMER 61 Viscosity 61 Resist: of Mud 5 6 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD Remarks: UNSUCCESSFUL TES Address 333 WEST HAMPDEN ENERGETICS, INC.	Wt	8.8 60 .5 @ BARRELS 17.2 51.0 SEAT F	58 5 % OIL 2 O	Recovery Mud
MUD E Mud Type POLYMER 61 Viscosity 61 Resist: of Mud .5 58 °F; Chloride Content 700 RECOVERY DESCRIPTION WATER CUSHION MUD Remarks: UNSUCCESSFUL TES Address 333 WEST HAMPDEN ENERGETICS, INC.	T; PACKER AVENUE;	8.8 60 .5 @ BARRELS 17.2 51.0 SEAT F	58 5 % OIL 2 O AILURE. OOD, COLO	Recovery Mud

Technician SIMPER (ROCK SPRINGS Approved By MR. STEVE H. ROBINSON

PAGE NO. 2

JOHNSTON Schlumberger

BOTTOM HOLE PRESSURE AND TIME DATA

INSTRUMENT NO.: J-072

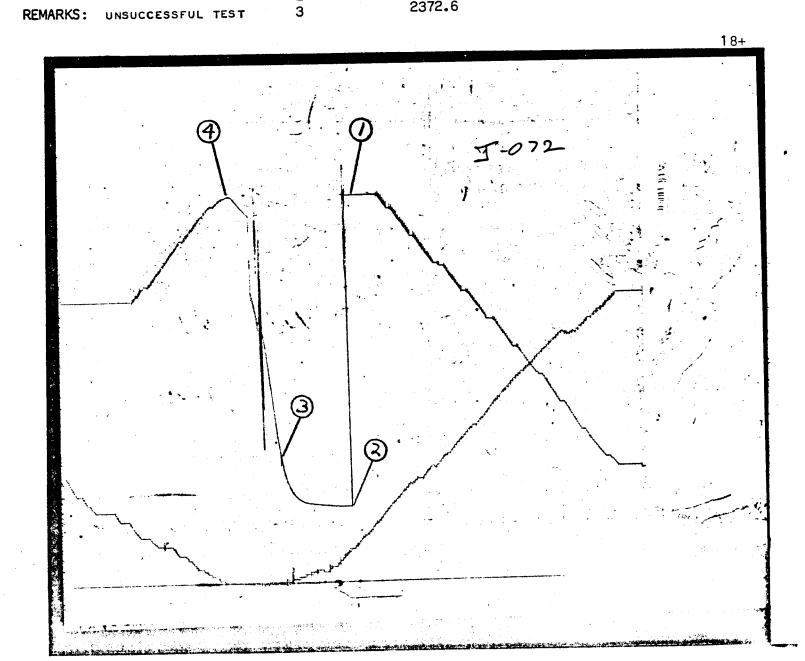
CAPACITY (P.S.I.): 9000#

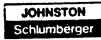
DEPTH 15479 FT.

PORT OPENING: INSIDE

BOTTOM HOLE TEMP.: 282°F.

FIELD REPORT NO. 09406 D


GIVEN


TIME

COMPUTED

TIME

DESCRIPTION	LABELED POINTS	PRESSURE (P.S.I.)
INITIAL HYDROSTATIC MUD INITIAL FLOW (1)	1	7058.0
INITIAL FLOW (2)		
INITIAL SHUT-IN SECOND FLOW (1)		
SECOND FLOW (2)		
SECOND SHUT-IN FINAL FLOW (1)		
FINAL FLOW (2)		
FINAL SHUT-IN FINAL HYDROSTATIC MUD	4	7050.8
THE THE THE THE	2	1413.3

BOTTOM HOLE PRESSURE AND TIME DATA

INSTRUMENT NO.: J-489

CAPACITY (P.S.I.): 9000#

15514 DEPTH

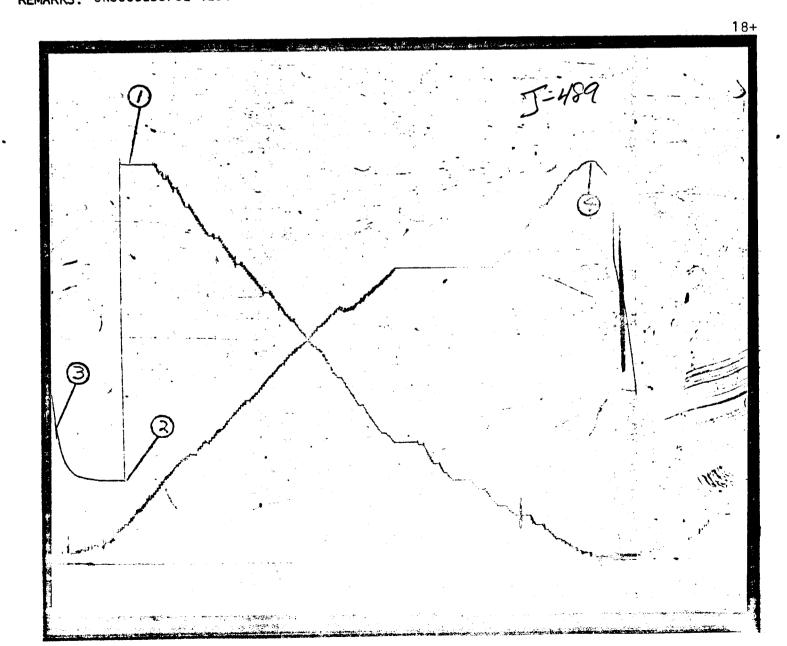
GIVEN

TIME

FT.

PORT OPENING:

OUTSIDE BOTTOM HOLE TEMP .:


282⁰F.

FIELD REPORT NO. 09406 D

COMPUTED

TIME

LABELED PRESSURE **DESCRIPTION** (P.S.1.) POINTS 7134.0 1 INITIAL HYDROSTATIC MUD INITIAL FLOW (1) INITIAL FLOW (2) INITIAL SHUT-IN SECOND FLOW (1) SECOND FLOW (2) SECOND SHUT-IN FINAL FLOW (1) FINAL FLOW (2) FINAL SHUT-IN 7109.3 FINAL HYDROSTATIC MUD 1467.8 2407.4 REMARKS: UNSUCCESSFUL TEST

P.O. BOX 36369 . HOUSTON, TEXAS

REVISED

CONFIRMATION OF TECHNICAL REPORT DISTRIBUTION

WELL NO. 13-3 WILD CAT MPANIES WITH TECHNICAL REPORTS S ON THIS WELL, UNLESS OTHERWISE TEST ONLY,
APANIES WITH TECHNICAL REPORTS
APANIES WITH TECHNICAL REPORTS S ON THIS WELL, UNLESS OTHERWIS TEST ONLY,
ECHNICAL REPORT (S)
OURCES DEVELOPMENT OTH STREET
colorado 80202
ECHNICAL REPORT (S) A MINING & MFG. COMPANY
27
., MINNESOTA 55133
IR. PAUL JOHNSON
POWER & LIGHT COMPANY ERVICE BUILDING OREGON 97204
ECHNICAL REPORT (S) OIL CORPORATION
DD, COLORADO 80110
ECHNICAL REPORT (S)

1588 WEST NORTH TEMPLE SALT LAKE CITY, UTAH 84116

IT IS OUR PLEASURE TO BE OF SERVICE.

JOHNSTON

JOHNSTON Schlumberger

> technical report

ENERGETICS, INC.

WELL ...

WEBER COAL #

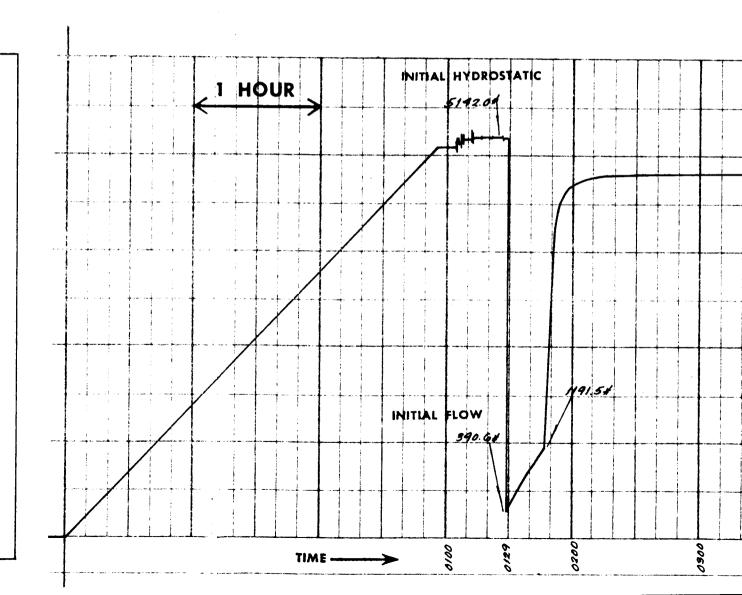
TEST NO.

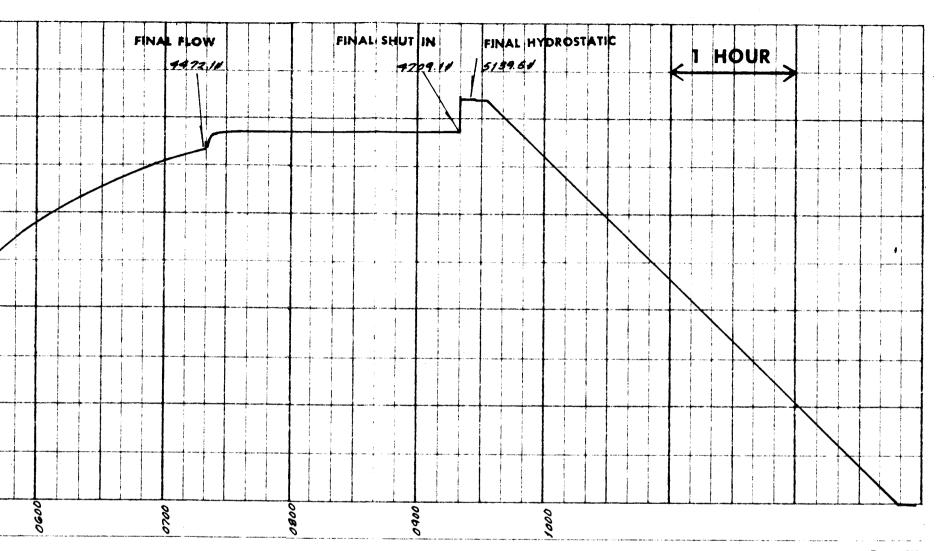
COLLINA

SUMMIT

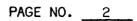
_ STATE __

SURFACE INFO	RMATION			EQUIPMENT & HOLE DATA
Description (Rate of Flow)	Time	Pressure (P.S.I.G.)	Surface Chake BUBBLE	Type Test M. F. E. OPEN HOLE Formation Tested
Opened Tool	0129		HOSE	ElevationFt.
FAIR BLOW INCREASED				Net Productive Interval ft.
CLOSED FOR INITIAL SHUT-IN	01 45	11	1/8"	Estimated Parasity
FINISHED SHUT-IN	0445		1/8	All Depths Measured From KELLY BUSHING 11630 Ft.
RE-OPENED TOOL	0446			latai bepin
FAIR BLOW	1 2500	2		Main Hole/Casing Size
	0503	3		Rat Hole/Liner Size
	0518	4½	11	Drill Pipe Length 9875 I.D
	0533	6	11	Packer Depth(s) 10531 & 10631 Ft.
	0548 0603	— 	11	Packer Depin(s)
	0618		11	MULTI-FLOW EVALUATOR
	0633	7	"	FLUID SAMPLE DATA
			-	
BLOW SLOWLY DECREASED TO	1			Sampler Pressure 60 P.S.I.G. at Surface
BUBBLE @ END OF FLOW	0719		11	Recovery: Cu. Ft. Gas
CLOSED FOR FINAL SHUT-IN	0920		11	ec. Oil
FINISHED SHUT-IN	0925			cc. Water <u>2400</u>
PULLED PACKER LOOSE				cc. Mud (UNDETERMINED AMOUNT)
	1			Tot. Liquid cc. 2400
				Gravity*API @*F.
				Gas/Oil Ratio cu. ft./bbi.
				RESISTIVITY CHLORIDE CONTENT
				CONTENT
Cushion Type Amount	Pressur		Bottom Choke 5/8 ¹¹	Recovery Water .25 @ 63 °F. 21,500 ppm
MUD D	ATA			Recovery Mud
Mud Type	Wt	9.3		12 - 60 -
	Water Lo	9	c.c.	Mud Pit Sample
Pedist of Mud • 12 @F;	of Filtrate	.10	58	Mud Pit Sample Filtrate 10 @ 50 °F. 55,000 ppm
Chloride Content 53,000			PPM	
RECOVERY DESCRIPTION	PERT	BARRELS	% OIL % W	ATER % OTHERS API GRAVITY RESISTIVITY CHL. PPM
	8140	_		
DRILLING MUD	1120			@ °F22 @ 64 °F. 28,000
BRACKISH SULPHUR WATER	1120	+		@ °f. @ °f.
		-		@ °F. @ °F.
				@ °F. @ °F.
		 		@ °F. @ °F.
				@ °F. @ °F.
		 		@ °F. @ °F.
Remarks:				
Address 333 WEST HAMPDEN;	SUITE 10	10; ENG	SLEWOOD, COL	orado 80110
ENERGETICS. INC.				Field WILD CAT
WEBER COAL #13-3			Location	- 2 15 77
10631 to 11630'			Test #	5 Date 2-15-77
Test Interval				Field Report No. 10961 C
County SUMMIT DUNN (ROCK SPRING	State	MR ST	EVE A. ROBI	NSON Pield Report No. 1993 13 (11x) No. Reports Requested 13 (11x)
	Told American I	v		·



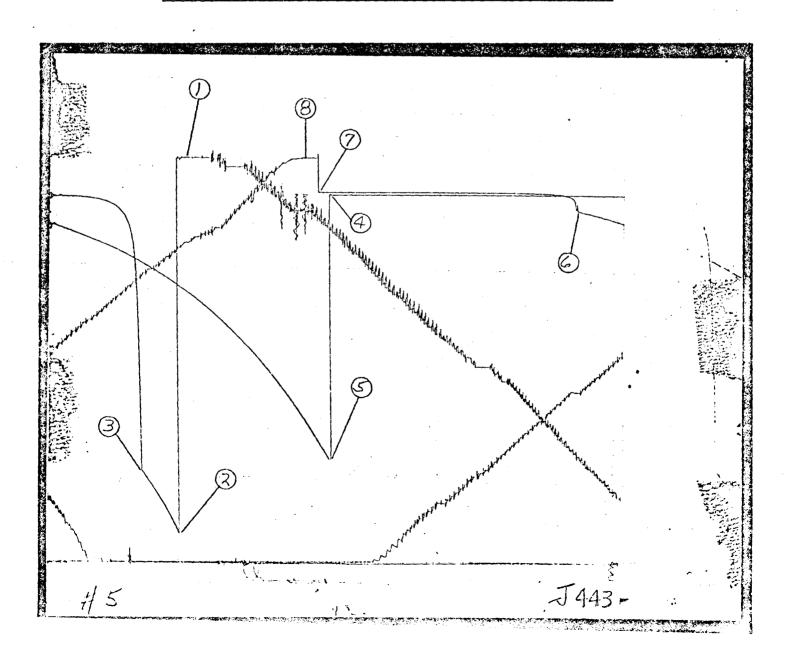

PRESSURE LOG*

Field Report No. 10961 C
Instrument:
Number J-443


Capacity 6400 p.s.i.
Depth 10642 ft.

*a continuous tracing of the original chart

Ea---- 1 220a


JOHNSTON Schlümberger

FIELD REPORT NO.: 10961 C

CAPACITY: 6400#

NO. OF REPORTS: 13-

PRESSURE DATA FROM THIS CHART IS PRESENTED ON NEXT PAGE

		BOTT	HOLE PRES	SURE AND I	TIME D	JOHNSTON Schlumberger
INSTRU	MENT NO	.: J-443	CAPACITY	(P.S.I.):	6400	DEPTH: 10642 FT.
PORT OPENING: OUTSIDE			BOTTOM HO	LE TEMP.:	224	PAGE 1 OF 2
DESCRIPTION INITIAL HYDROSTATIC MUD INITIAL FLOW(1) INITIAL FLOW(2)			LABELED POINTS 1 2 3	PRESSURE (P.S.I.) 5142.0 390.6 1191.5		COMPUTED TIME
INITIAL	SHUT-I		4	4675.4	180	180
FINAL FLOW(1) FINAL FLOW(2) FINAL SHUT-IN FINAL HYDROSTATIC MUD			4 5 6 7 8	1341.1 4472.1 4709.1 5139.5	153 121	153 121
			INCREMENTAL	READINGS		
LABEL POINT	DELTA TIME	PRESSURE (P.S.I.)	T + DT/DT	LOG	PW - PF (P.S.I.)	COMMENTS
1 2	0	5142.0 390.6				HYDROSTATIC MUD INITIAL FLOW(1)
3 3	10 17 0 10	894.6 1191.5 1191.5 4480.8	2.700	0.431	3289.4	INITIAL FLOW(2) STARTED SHUT-IN
	20 30 40 50 60	4618.1 4651.7 4661.7 4666.7 4669.2	1.850 1.567 1.425 1.340 1.283	0.267 0.195 0.154 0.127 0.108	3426.6 3460.3 3470.3 3475.3 3477.8	
	70 80 90 100 110	4671.7 4672.9 4672.9 4672.9 4674.2	1.243 1.213 1.189 1.170 1.155	0.094 0.084 0.075 0.068 0.062	3480.2 3481.5 3481.5 3481.5 3482.7	
	120 130 140 150 160	4675.4 4675.4 4675.4 4675.4 4675.4	1.142 1.131 1.121 1.113 1.106	0.058 0.053 0.050 0.047 0.044	3484.0 3484.0 3484.0 3484.0 3484.0	

170

180

0

20

30

40 50

60 70

80

90 100

110

4

5

4675.4

4675.4

1341.1

1735.3

2129.5

2478.8 2784.4

3055.1 3293.3

3499.1 3678.8

3839.7

3978.1

4097.9

1.100

1.094

0.041

0.039

3484.0

3484.0

INITIAL SHUT-IN

FINAL FLOW(1)

PAGE 2 OF 2

LABEL POINT	DELTA TIME	PRESSURE (P.S.I.)	T + DT/DT	LOG	PW - PF (P.S.I.)	COMMENTS
6	120 130 140 150 153	4206.4 4301.2 4384.8 4455.9 4472.1				FINAL FLOW(2)
6	0 1	4472.1 4500.8	154.000	2.188	28.7	STARTED SHUT-IN
	2 3	4616.8 4640.5	.77.500 52.000	1.889 1.716	144.7 168.4	
	4 5	4654.2 4663.0	39.250 31.600	1.594	182.1 190.9	
	6 7	4669.2 4674.2	26.500 22.857	1.423	197.1 202.1	
	8 9	4677.9	20.125	1.304	205.8	
	10	4681.7 4684.2	18.000	1.255	209.6 212.1	
	12 14	4687.9 4691.7	13.750 11.929	1.138 1.0.77	215.8 219.5	
	16	4694.2	10.562	1.024	222.0	
	18 20	4696 • 6 4697 • 9	9.500 8.650	0.978 0.937	224.5 225.8	
	22	4699.1	7.955	0.901	227.0	
	24	4700.4	7.375	0.868	228.3	
	26 28	4700.4 4701.6	6.885 6.464	0.838 0.8.11	228.3 229.5	
	30 35	4701.6 4702.9	6.100 5.371	0.785	229.5	
	40	4702.9	4.825	0.730 0.683	230.8 232.0	
	45	4705.4	4.400	0.643	233.3	
	50	4706.6	4.060	0.609	234.5	
	.55 60	4707.9 4707.9	3.782 3.550	0.578 0.550	235.8 235.8	
	65	4707.9	3.354	0.526	235.8	
	70	4707.9	3.186	0.503	235.8	
	75 80	4707.9 4709.1	3.040 2.912	0.483 0.464	235.8 237.0	
	85	4709.1	2.800	0.447	237.0	
	90	4709.1	2.700	0.431	237.0	
	95	4709.1	2.611	0.417	237.0	
	1 00 1 05	4709 • 1 4709 • 1	2.530 2.457	0.403 0.390	237.0 237.0	
	110	4709.1	2.391	0.379	237.0	
	115	4709.1	2.330	0.367	237.0	
7	120	4709 • 1 4709 • 1	2.275 2.264	0.357 0.355	237.0 237.0	FINAL SHUT-IN
7 8	121	5139.5	2.204	0.399	231.0	HYDRUSTATIC MUD

technical report COMPANY ENERGETICS, INC.

WELL WEBER COAL #13-3

COUNTY SUMMIT

STATE UTAH

SURFACE	INFORMATION	4				EQUIPM	EINI C	HYLE	UAIL	
Description (Rate of Flow)	Time	Pressure (P.S.I.G.)	Surfi Che	100	Type Test _		М.	F. E.	OPEN	HOLE
•];	}	1)		ested				
Opened Tool					Elevation					Ft
				}	Net Product	ive Interval	_			Ft
						orosity				
					All Depths / Total Depth		110	530		f1
			L		Main Hole/	Casing Size .	-			
						ner Size				
					Drill Collar	Length	-		D. –	
					Drill Pipe L	nath			D	
					Drill Pipe La Packer Dept	h(s)	114	492 & 1	1498	Fe
					<u> </u>					
						-		EVALU. IPLE DA		
					Sampler Pre	ssure			_ P.S.I.G	. at Surface
		ļ			Recovery: Co	v. Pt. Gas .				
					α	. Oil .		·		
					a	. Water .				
				ſ		. Mud				
					1	ot. Liquid ec				
					Gravity			API @		*F.
					Gas/Oil Rat			_		
							RESISTI	VITY	CHL	ORIDE NTENT
Cushion Type Amount	t Pressure	,	Bottom Cha	ke	Recovery Wo	oter .	@	°F		DDM
<u>-</u>		Sir	•			•				,,,
					Recovery Mu	ıd .	@	°r		
MUI	D DATA				Recovery Mu	d Filtrate	@	°F		ppm
Mud Type	WI				1					
Viscosity	Water Los	ı s			Mud Pit San	•				
Resist: of Mud @	_°F; of Filtrate	@	-	_ *#	Mud Pit Sam	ple Filtrate	@	°F		ppm
Chloride Content				PPM						
RECOVERY DESCRIPTION	FEET	BARRELS	% OIL	% WATE	R % OTHERS	API GRAV	VITY	RESISTIV	ITY	CHL. PPM
<u>-</u>		1	}			@	°F.	@	°F.	
									°F.	
						@	°F.	@	F.	
						@	°F.	@ @	°F.	
							°F.			
						@	°F.	@ @ @	°F. °F. •F.	
						@	°F. °F. °F.	@ @ @ @	°F. °F. *F.	
						@ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F.	
						@ @ @ @	°F. °F. °F.	@ @ @ @	°F. °F. *F.	
Remarks: UNSUCCESSFUL TES	T; PACKER SE	AT FAILS	JRE			@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F.	
Remarks: UNSUCCESSFUL TES	T; PACKER SE	AT FAILS	JRE			@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F.	
Remorks				DI OPA	DO 8011	@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F.	
Remarks: UNSUCCESSFUL TES 333 WEST HAMPDEN				DLORA	DO 8011	@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F.	
Address 333 WEST HAMPDEN ENERGETICS, ENC.	ı, suite 1010			DLORA	DO 8011	@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F. °F.	
Address 333 WEST HAMPDEN Company ENERGETICS, ENC. Well WEBER COAL #13-3	1, SUITE 1010	; ENGLEV			-	@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F. °F.	
Address 333 WEST HAMPDEN Company ENERGETICS, ENC. WEBER COAL #13-3	1, SUITE 1010	; ENGLEV	VOOD, CC		-	@ @ @ @ @	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F. °F.	
Address Company Well Test Interval 333 WEST HAMPDEN ENERGETICS, ENC. WEBER COAL #13-3 11498' TO 11630'	I, SUITE 1010 B UNSUCCESSE	UL)	Location		-	@ @ @ @ @ O Pielo	°F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F. °F.	
Address 333 WEST HAMPDEN Company ENERGETICS, ENC. WEBER COAL #13-3	State	UL)	VOOD, CO		<u>-</u> 4	@ @ @ @ @ @ Date	°F. °F. °F. °F. °F.	@ @ @ @ @	°F. °F. °F. °F.	

BOTTOM HOLE PRESSURE AND TIME DATA

INSTRUMENT NO.: J-443

CAPACITY (P.S.I.):

6400#

5638.7

DEPTH

GIVEN

TIME

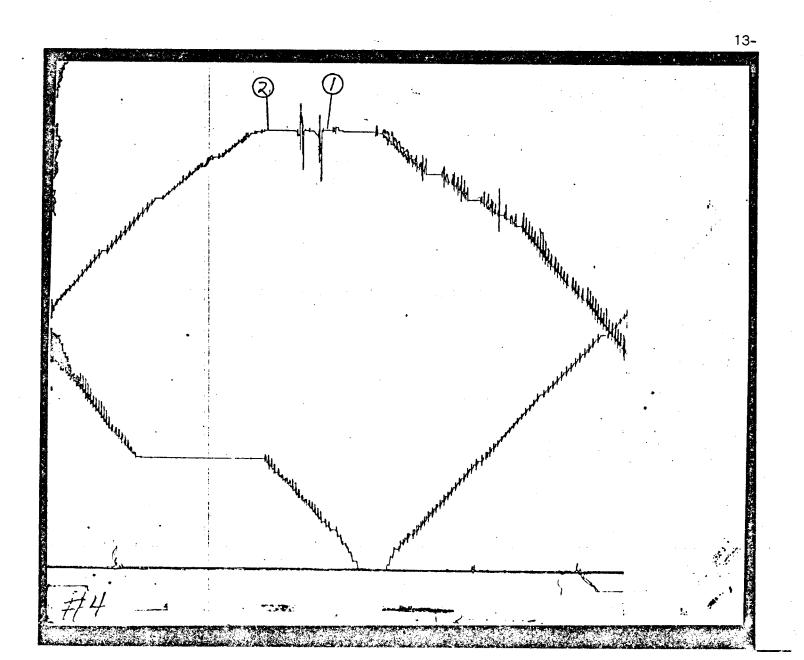
FT.

PORT OPENING:

OUTSIDE

BOTTOM HOLE TEMP.: READ AT 150°F. FIELD REPORT NO.

10960 C


COMPUTED

TIME

DESCRIPTION LABELED PRESSURE POINTS (P.S.I.) INITIAL HYDROSTATIC MUD 1 5648.9 INITIAL FLOW (1) INITIAL FLOW (2) INITIAL SHUT-IN SECOND FLOW (1) SECOND FLOW (2) SECOND SHUT-IN FINAL FLOW (1) FINAL FLOW (2) FINAL SHUT-IN FINAL HYDROSTATIC MUD

REMARKS:

Unsuccessful test.

JOHNSTON Schlumberger

technical report

COMPANY ENERGETICS, INC.

WEBER CO

R COAL #13-3

٥ اد

COUNTY SUMMIT

STATE_

SURFACE II	<u>NFORMATION</u>			EQL		HOLE DA	
Description (Rate of Flow)	Time	Pressure (P.S.I.G.)	Surface Choke	Type Test		F. E. OPE	
Opened Tool	1709	_	_	Formation Tested			
PACKER SEAT FAILED	1,00			Net Productive In			
, Address of the second of the				Estimated Parasity			
				All Depths Measur	red From		
				Total Depth	116	30	Ft.
				Main Hole/Casing			
				Rat Hole/Liner Siz	_		
				Drill Collar Lengt	h138	1.D	
				Drill Pipe Length .	113	71 & 1147	
			_	Packer Depth(s) _	114	11 & 1147	5 Ft.
				f f	ULTI-FLOW FLUID SAM	EVALUATO	OR .
				Sampler Pressure		P.S	i.l.G. at Surface
				Recovery: Cu. Ft. C	3es		
				ec. Oil	····		
				cc. Wate			
				cc. Mud			
						•	
				Gravity		_	
				Gas/Oil Ratio			CU. 17./ BOI.
					RESIST	VITY	CHLORIDE CONTENT
							COMILM
Cushion Type Amount	Pressure		Bottom Choke	Recovery Water	@	°F	ppm
		Siz	·	Recovery Mud	@	°F.	
MUD	DATA			Recovery Mud Filts	rate@	°F	ppm
Mud Type	Wt			_			
Viscosity	Water Los	4	c	·	@		
	*F; of Filtrate	<u>10</u> @ .	60	°F Mud Pit Sample Fi	iltrate@	°F. –	ppm
Chloride Content 5300				<u> </u>			
RECOVERY DESCRIPTION	FEET	BARRELS	% OIL %	WATER % OTHERS AF	PI GRAVITY @ °F.	RESISTIVITY	CHL PPM
					@ °F.		'F.
			 		@ °F.		'F.
			 		@ °F.		'F.
					@ °F.		F
					@ °F.	@	'F.
					@ °F.	@ '	'F.
					@ °F.	@	F.
Remarks: UNSUCCESSFUL TES	T; PACKER SE	AT FAIL	URE.				
					···		
333 WEST HAMPDEN	SHITE 1010). ENC. 5	MOOD CO	084D0 80110			
Address 333 WEST HAMPUEN;	, 301112 1010	CINGLE	الال ولالاله	ONADO OOTTO			
Company ENERGETICS, INC.					Field		
WEBER COAL #13-3		١	Location	-		0 10 77	
Test Interval 11475' TO 11630'	(UNSUCCESSE	UL)	Test #	3:	Date	2-13-77	
County SUMMIT	State		UTAH		Field Report N		10959 C
Technician DUNN ROCK SPRINGS	Test Approved By		MR. STEVE	ROBINSON	No. Reports R	lequested	13(11x's)

PAGE NO. 2

JOHNSTON Schlumberger

BOTTOM HOLE PRESSURE AND TIME DATA

INSTRUMENT NO.: J-443

CAPACITY (P.S.I.): 6400#

DEPTH 11500 FT.

PORT OPENING:

OUTSIDE BOTTOM HOLE TEMP.: READ AT 150°F. FIELD REPORT NO. 10959 C

GIVEN

TIME

COMPUTED

TIME

INITIAL HYDROSTATIC MUD

DESCRIPTION

INITIAL FLOW (1)

INITIAL FLOW (2)

INITIAL SHUT-IN

SECOND FLOW (1)

SECOND FLOW (2)

SECOND SHUT-IN

FINAL FLOW (1)

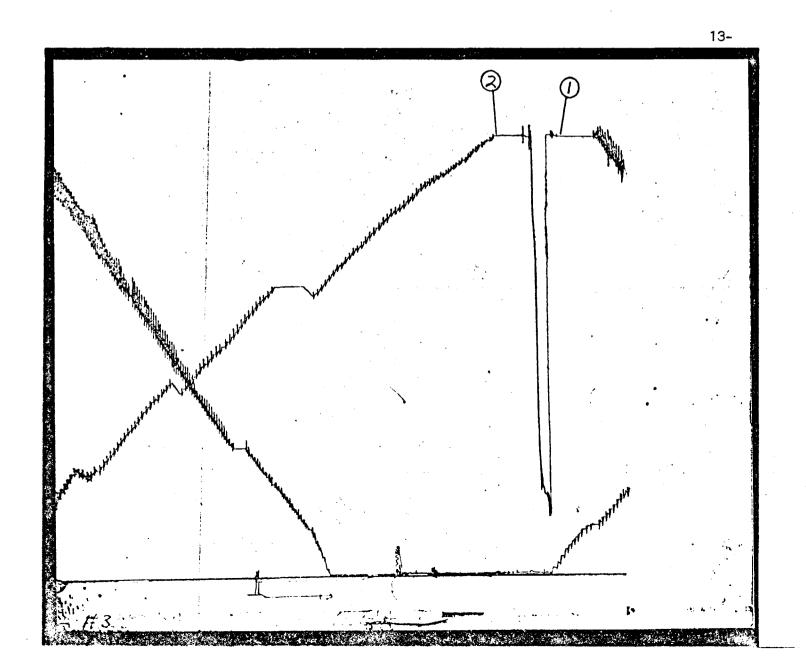
FINAL FLOW (2)

FINAL SHUT-IN

FINAL HYDROSTATIC MUD 2

LABELED

POINTS


5640.0

PRESSURE (P.S.I.)

5627.3

REMARKS:

UNSUCCESSFUL TEST.

technical report

ETICS. INC.

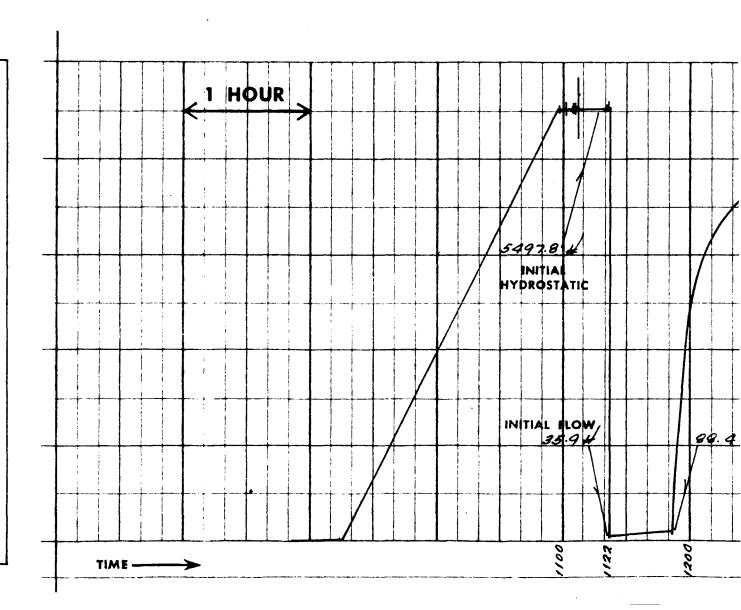
WEBER COAL 1

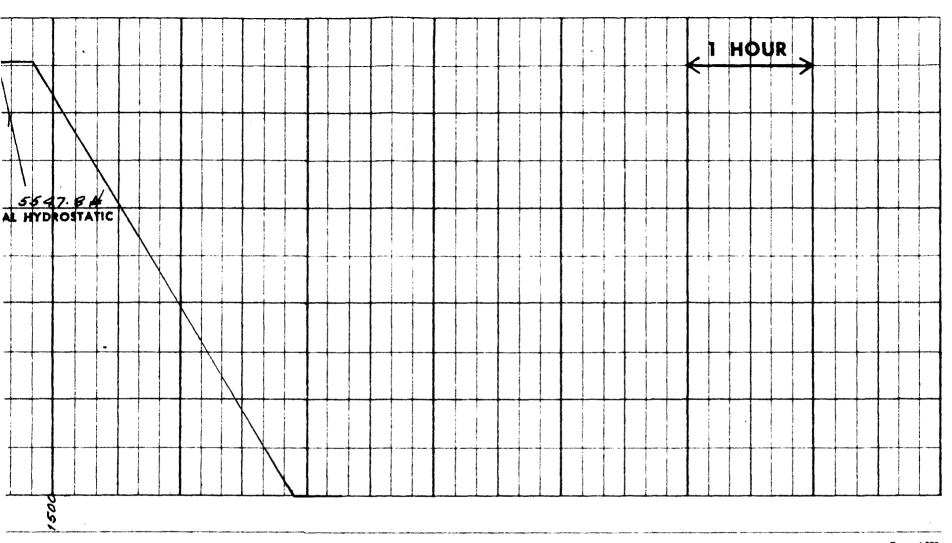
_ TEST NO.

. COUNTY

STATE __U

CLOSED FOR INITIAL SHUT-IN 1522	JUNIAUE INFO	RMATIO	N				EQUIPA	AENT	& HOLE	DAT	4
1/4"	Description (Rate of Flow)	Time	Prose (P.S.I	J.G.)	Surface Choke	Type Test		М.	F. E.	OPEN	HOLE
VERY WEAK SLOW 1/2" IN WATER 1127		1100		·	7/011	Formation 1	lested				-
CLOSED FOR INITIAL SHUT-IN 152 -		1122	 		1/4"	Elevation					Ft.
CLOSED FOR INITIAL SHUT-IN 152 -		1107	 			Net Product	tive Interval	40			Ft.
FINISHED SHUT-IN 1253		1	 								%
RECOPENED TOOL 1253		1	 	+		1		Om		SHING	
NO BLOW SLOW REMAINED SAME FOR SLOW REMA		L	 	+		1		0			Ft.
SLIGHT BLOW 1259		1230	 			1	-				
BALANCE OF TEST		1259	 		· · · · · · ·			52	29'	2.	25"
BALANCE OF TEST	BLOW REMAINED SAME FOR		†				•	10	0917	3.	826"
### PULLED PACKER LOOSE 1429	BALANCE OF TEST							1 .	1476 &	11480	
MUSTIFFLOW EVALUATION Sompler Pressure 2	CLOSED FOR FINAL SHUT-IN		-		TT		(0)				
	PULLED PACKER LOOSE	1429	-		_						
Recovery (No. 1840 1840		<u> </u>				Sampler Pre	asure.	2		PSIC	at Surface
Counting Type Annount Pressure Bettern Challe Size 5/8"						1 '				/.5.1.0	, di 30/100
Cushien Type											
Tell Uquid cc			<u> </u>				. Water				
Cushien Type			ļ				:. Mud	18	340		·
Cushien Type		<u> </u>	 			To	ot. Liquid cc.	18	340		
RESISTIVITY CHICAIDE CONTENT						Gravity			"API @ .		
Cushien Type		 				Gas/Oil Rat	io				cu. ft./bbl.
Cushien Type						ļ					
Size 5/8"								RESIS	TIVITY	CHI	ORIDE NTENT
Mud Type	Cushion Type Amount	Pressure	•	Botto Size _5	om Choke	,			_		- ••
Mud Type	MUD DA	TA					ud Laterra	13	@		000
A	Mud tura SALT/POLYMER					Recovery Mu	d riitrate		<u> </u>	F	ppm
RECOVERY DESCRIPTION FEET BARRELS % OIL % WATER % OTHERS API GRAVITY RESISTIVITY CHIL PPM	Viscosity 41				CC	Mud Pit Son	nnle	. 15	a 72 .	E	
RECOVERY DESCRIPTION FEET BARRELS % OIL % WATER % OTHERS API GRAVITY RESISTIVITY CHIL PPM	Resist: of Mud_ • 15 @ 72 •ss	Filtrate	15	@ 68	·F	Mud Pit Sam	ple Filtrate	.15	<u>e</u> 68.	465	00 ppm
	Chloride Content 46500				PPM						
Q °F. Q °F. Q °F.		1	1	j		R % OTHERS					
@ °F. @ °F. @ °F.	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA	VITY	RESISTI	VITY	
1	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA	°F.	RESISTI	VITY *F. *F.	
@ °F. @ °F. @ °F.	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA @ @ @	°F.	RESISTI @ @ @	°F.	
333 WEST HAMPDEN, SUITE 1010; ENGLEWOOD, COLORADO 80110 Sompany ENERGETICS, INC. Well WEBER COAL #13-3 Location SW/4-SEC.3-TWP2N-RGE5E Location Test # 2 Date 2-10-77 Sounty SUMMIT State UTAH Field Report No. 14401 C	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA @ @ @ @ @	°F. °F. °F.	@ @ @	°F.	
2 °F.	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA @ @ @ @ @ @	°F. °F. °F. °F.	@ @ @ @	°F. °F. °F. °F.	
333 WEST HAMPDEN, SUITE 1010; ENGLEWOOD, COLORADO 80110 Sompany ENERGETICS, INC. Well WEBER COAL #13-3 Location SW/4-SEC.3-TWP2N-RGE5E est Interval 11480' TO 11521' Sounty SUMMIT State UTAH Field Report No. 14401 C	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	RESISTI @ @ @ @ @ @	°F. °F. °F. °F. °F.	CHL. PPM 48500
333 WEST HAMPDEN, SUITE 1010; ENGLEWOOD, COLORADO 80110 Sompony	RECOVERY DESCRIPTION	1	1	j		R % OTHERS	API GRA @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	@ @ @ @ @ @	°F. °F. °F. °F. °F.	
ENERGETICS, INC. Field WILD CAT	RECOVERY DESCRIPTION WATER CUT DRILLING MUD	1	1	j		R % OTHERS	API GRA @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	@ @ @ @ @ @	°F. °F. °F. °F. °F.	
Well WEBER COAL #13-3 Location SW/4-SEC.3-TWP2N-RGE5E est Interval 11480' TO 11521' Test # 2 Date 2-10-77 county SUMMIT State UTAH Field Report No. 14401 C	RECOVERY DESCRIPTION WATER CUT DRILLING MUD	1	1	j		R % OTHERS	API GRA @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	@ @ @ @ @ @	°F. °F. °F. °F. °F.	
11480' TO 11521' Test # 2 Date 2-10-77	RECOVERY DESCRIPTION WATER CUT DRILLING MUD Remarks: 333 WEST HAMPDEN. SU	313	1.53	3	DIL % WATE		API GRA @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	@ @ @ @ @ @	°F. °F. °F. °F. °F.	
County SUMMIT State UTAH Field Report No. 14401 C	RECOVERY DESCRIPTION WATER CUT DRILLING MUD Remarks: Address Sompany ENERGETICS, INC.	313	1.53	3	COLORAI	00 8011	API GRA @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	@ @ @ @ @ @	°F. °F. °F. °F. °F.	
	RECOVERY DESCRIPTION WATER CUT DRILLING MUD Remarks: Address Sompany ENERGETICS, INC. WEBER COAL #13-3	313	1.53	LEWOOD	COLORAI	00 8011	### API GRA @ @ @ @ @ @ @ @ @ @ @ #### #########	°F. °F. °F. °F. °F. °F.	RESISTI @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	
	RECOVERY DESCRIPTION WATER CUT DRILLING MUD Remarks: Address Sompany ENERGETICS, INC. WEBER COAL #13-3 114901 - 2 11521	313	1.53	Location Location	, COLORAI	00 8011	### API GRA @ @ @ @ @ @ @ @ @ @ @ #### #########	°F. °F. °F. °F. °F. °F.	RESISTI @ @ @ @ @ @ @ @ @	°F. °F. °F. °F. °F.	
	RECOVERY DESCRIPTION WATER CUT DRILLING MUD Remarks: Address Sompany ENERGETICS, INC. Well WEBER COAL #13-3 Test Interval 11480' TO 11521'	313 ITE 1010	1.53	Location Test	COLORAI	00 8011	## GRA @ @ @ @ @ @ @ @ @ @ ## P2N-R	°F. °F. °F. °F. °F. °F. °E. °F. °F. °F.	@ @ @ @ @ LD CAT	*F. *F. *F. *F.	48500


PRESSURE LOG*


Field Report No. 1440/C

Capacity 6400 p.s.i.

Depth 11505 ft.

*a continuous tracing of the original chart

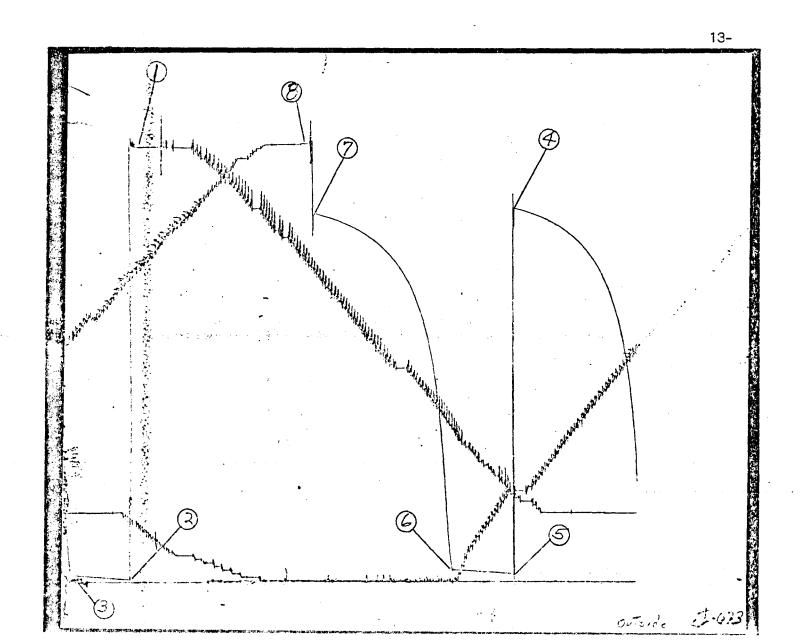
Form J-228a

BOTTOM HOLE PRESSURE AND TIME DATA

INSTRUMENT NO.: J-073

CAPACITY (P.S.I.): 6400#

DEPTH 11505


FT.

PORT OPENING: OUTSIDE

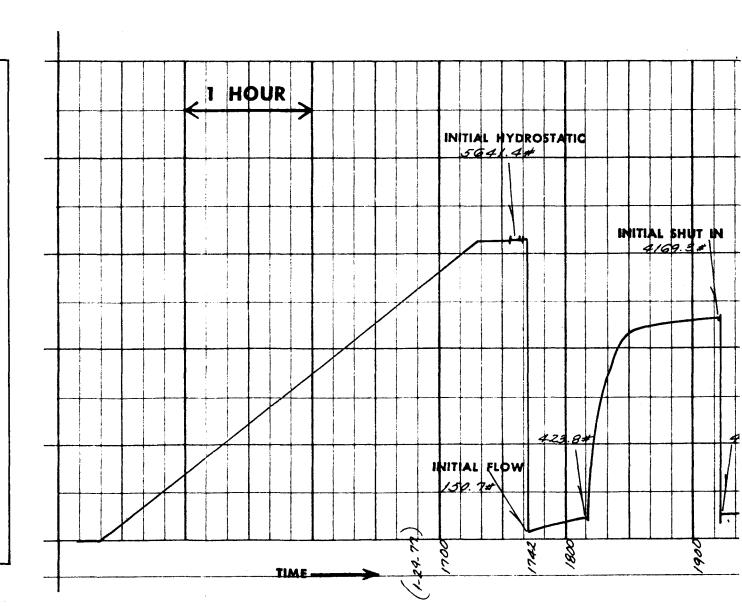
BOTTOM HOLE TEMP.: 238°F. FIELD REPORT NO. 14401 C

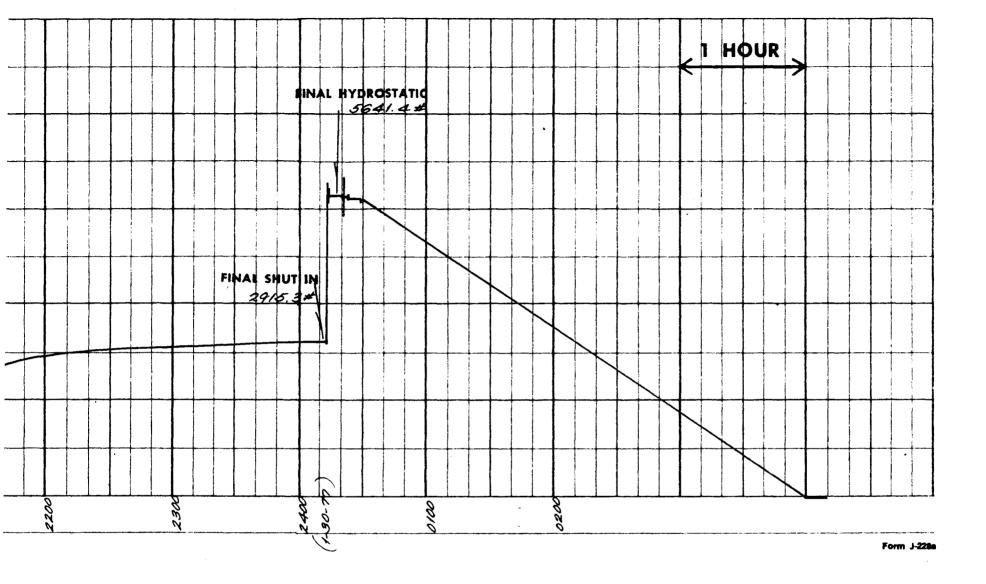
DESCRIPTION	LABELED POINTS	PRESSURE (P.S.I.)	GIVEN TIME	COMPUTED TIME	
INITIAL HYDROSTATIC MUD	1	5497.8	1 11-16	1 11-16	
INITIAL FLOW (1)	2	35.9			
INITIAL FLOW (2)	3	88.4	30		
INITIAL SHUT-IN	4	4730.9	6 0		
SECOND FLOW (1)					
SECOND FLOW (2)					
SECOND SHUT-IN					
FINAL FLOW (1)	5	112.1			
FINAL FLOW (2)	6	162.1	30		
FINAL SHUT-IN	7	4662.2	66	•	
FINAL HYDROSTATIC MUD	8	5547.8			

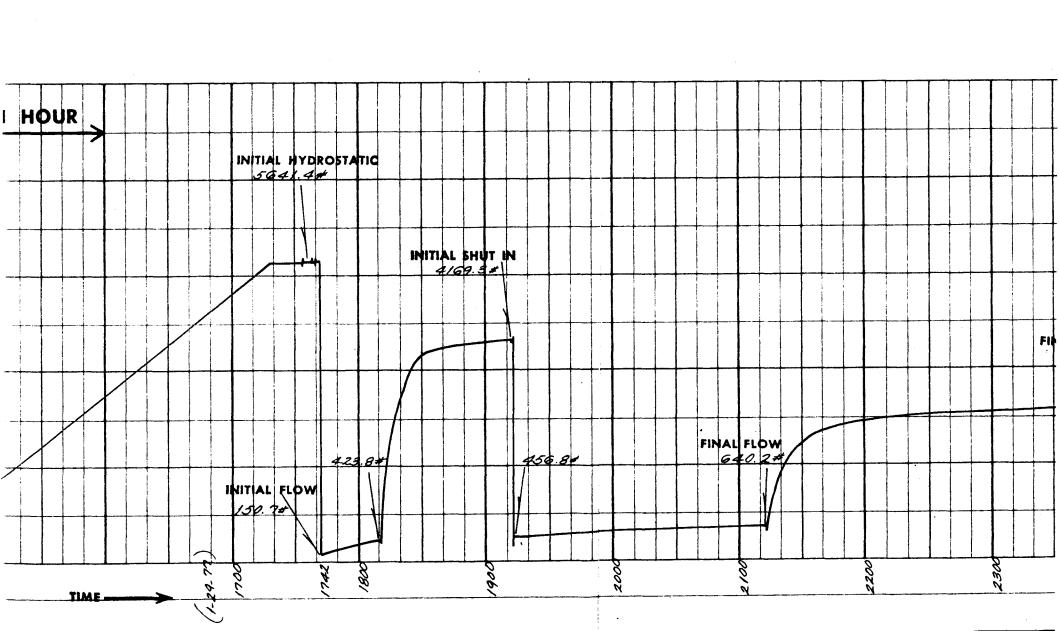
REMARKS:

PRESSURE LOG*

Field Report No. 14388 C

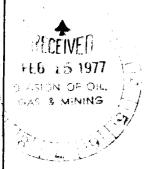

Instrument: Number____


J-544


Capacity 9000 p.s.i.

Depth 10648 ft.

*a continuous tracing of the original chart

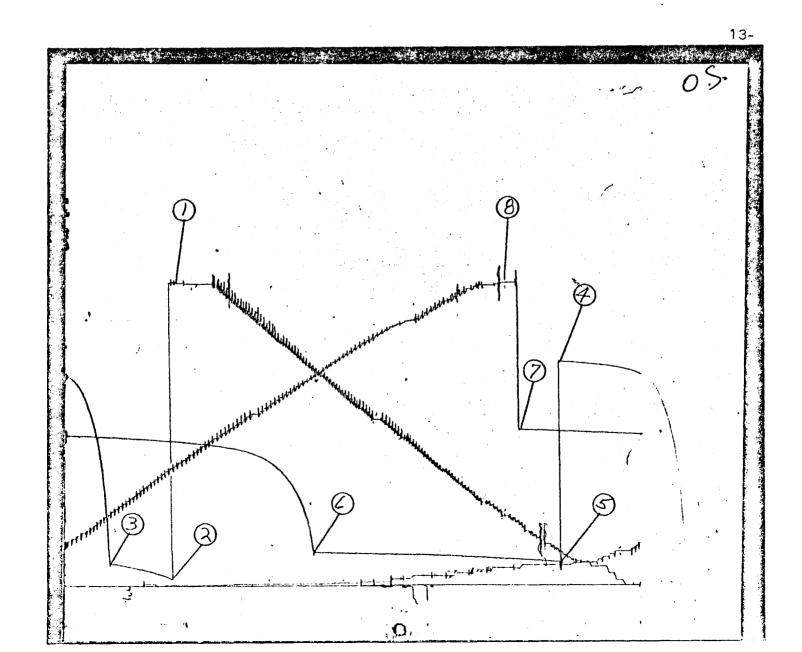


JOHNSTON Schlumberger

technical report

SURFACE INFO	RMATIO	N		EQI	MPMENT	A HOLE D	MTA
Description (Rate of Flow)	Time	Pressure (P.S.I.Q.)	Surface Chake	Type Test		.F.E. OPEN	
•		(7.2.1.0.)	BUBBLE	Formation Tosted		WIN CREEK	
Opened Teel (1-29-77)	1742	-	HOSE	Elevation	6	002	
SLIGHT BLOW, 1" IN WATER				Not Productive In	tervel 2	20	Pt.
STEADY BLOW, 24", IN WATER	1747	-	11	Estimated Parasit			
INCREASED TO 31 IN WATER	1800	-	11	All Dopths Measu	red From K	ELLY BUSHI	NG
CLOSED FOR INITIAL SHUT-IN		-		Total Depth	1	0905	F1
FINISHED SHUT-IN	1912		"	Main Hole/Casing	Size8	1/2"	
RE-OPENED TOOL	1913	<u> </u>	11	Rat Hole/Liner Si			
SLIGHT BLOW		<u></u>		Drift Collar Lengt	6	80' I.D.	2 7/8"
BLOW, 12" IN WATER	1920		"	Drill Pipe Length	9	847'	3 1/4"
BLOW REMAINED SAME FOR		ļ		Packer Depth(s)_	•	0567 & 106	536
BALANCE OF TEST							
CLOSED FOR FINAL SHUT-IN	2113	-	"		ATLEIO	N EVALUA	100
(1-30-77)						MPLE DAT	
PULLED PACKER LOOSE	0013	-				MARKE DAI	
				Sampler Pressure	5		P.S.I.G. at Surface
				Recevery: Cu. Ft. C			
				es. Oil	-		
				cc. West			
				ce. Mud		400	
					rid ec. 2	400	
				Gravity		'API @	••
				Gos/Oli Retio		~	a. A./bbl.
							
	, ,,,,				RESI	STIVITY	CHACEIDE
				1			
Cushien Type Amount	Proceum	•	Bettom Chake	Recevery Water	-	• <u>-</u> •	
<u> </u>		Siza	5/8"		*******	"	
				Recovery Mud		. 	
MUD DA	حصيب عنصت	10.1		Recovery Mud Filte	ate <u> </u>	• · · · · · · · · · · · · · · · · · · ·	ppm
salt POLYMER 40	WI		l	ļ		60	
lecosity40	Water Le	u <u>0.0</u>	c.c.	Mud Pit Sample Mud Pit Sample Fit	-08	<u>62</u> •r.	00000
selet: of Mud <u>.08</u> @ <u>62</u> *F, of	Filtrate	<u>.08</u> @ _	<u>62</u> • F	Mud Pit Sample Fi	. 08	<u>62</u> • F.	98000
hisride Content 98000			PPM				
RECOVERY DESCRIPTION	PEET	BARRELS	% OIL % WATE	R % OTHERS AP	GRAVITY	RESISTIVITY	Y CHL PPM
DRILLING MUD	1131	10.57			@ *F.	.1 @ 64	·r. 97,000
DRILLING MUD	190	1.52			@ °F.		
	<u> </u>				@ 'F.		*F.
				1	@ 'F.		*p.
					② ⁴₽.		°9.
					@ °F.		*F.
		<u> </u>		 	@ °7.	<u> </u>	•6.
	T	†		 	<u>@</u> '7.		*P.
pmorks:		<u> </u>	· · · · · · · · · · · · · · · · · · ·				
ymurasi							
· · · · · · · · · · · · · · · · · · ·							
333 WEST HAMPTON AVEN	WE: SHI	TE 1010:	FNGLEWOOD	COLORADO 8	0110		
ddress		,		JOGSKADO O			
ENERGE TICS INC					1.1	IID CAT	
ENERGETICS, INC. WEBER COAL #13-3			, KLIS	sec. 3 - 72N	Field CE	ILD CAT	
011			Kation	3 EC. 3 - 12N		00 77	:
st Interval 10636' TO 10905'		To	ost #	· · · · · · · · · · · · · · · · · · ·	Date	-29-77	
							1.4000 0
SUMMIT		UTAH			Field Report	. N	14388 C
ountySUMMIT	State	UIAH			LIGITA MODOLI		
echnicion WOMACK (ROCK SPRINGS)	State	MR. STEV	E A. ROBIN	SON	No. Reports		13(11.x)

BOTTOM HOLE PRESSURE AND TIME DATA


INSTRUMENT NO.: J-544

CAPACITY (P.S.I.): 9000# DEPTH 10648 FT.

PORT OPENING: OUTSIDE BOTTOM HOLE TEMP.: 2080F. FIELD REPORT NO. 14388 C

DESCRIPTION	LABELED POINTS	PRESSURE (P.S.I.)	GIVEN TIME	COMPUTED TIME
INITIAL HYDROSTATIC MUD	1	5641.4		
INITIAL FLOW (1)	2	150.7		
INITIAL FLOW (2)	. 3	423. 8	.30	
INITIAL SHUT-IN	. 4	4169.3	60	
SECOND FLOW (1)				
SECOND FLOW (2)				
SECOND SHUT-IN				
FINAL FLOW (1)	5	456.8		
FINAL FLOW (2)	6	640.2	120	
FINAL SHUT-IN	7	2915. 3	180	
FINAL HYDROSTATIC MUD	8	5641.4		

REMARKS:

P.O. BOX 36369 . HOUSTON, TEXAS

CONFIRMATION OF TECHNICAL REPORT DISTRIBUTION

CUSTOMER_	ENERGETICS, INC.		_ FIELD REP	ORT NO143	14388 C DATE 1-29-77		
COMPANY	SAME		LEASE	WEBER COAL	WELL NO13-3		
COUNTY	SUMMIT	STATE _	UTAH	FIELD	WILD CAT		
					·		
THIS DISTR	RIBUTION OF TECHN	ICAL REPORTS	S WILL BE USE	FOR: THIS ONE TES	NIES WITH TECHNICAL REPORTS. I THIS WELL, UNLESS OTHERWISE T ONLY,		
1	ECHNICAL REPORT	r (s)		1TECH	INICAL REPORT (S)		
FUELCO	- FUEL RESOUR	CES DEVEL.	co.	TERENCE L.	BRITT		
550 -	15TH STREET			3280 BERNA			
DENVER	R, COLORADO 8	0202		SALT_LAKE	СІТУ, ШТАН 84117		
т	ECHNICAL REPORT	· (S)		1TECH	INICAL REPORT (S)		
<u>3-M M</u>	IINNESOTA MININ	IG & MFG, CO	<u>.</u>	IMPEL CORP	ORATION		
	33327				ANK BUILDING		
	UL; MINNESOTA		···	<u> 475 - 17тн</u>			
ATTN:	MR PAUL JOHNSO	N		DENVER. CO	LORADO 80202		
т	ECHNICAL REPORT	· (S)		1TECH	INICAL REPORT (S)		
	C POWER & LIGH			TOM BROWN.	INC.		
	SERVICE BUILD			315 MIDLAN	D TOWER BUILDING		
	ND, OREGON 9			P.O. BOX 2	608		
ATTN:	MR GARY BOSHEA	R\$		MIDLAND. T	EXAS 79701		
т	ECHNICAL REPORT	· (S)		TECH	INICAL REPORT (S)		
PASCO	- SINCLAIR OIL				WALLACE, ARMSTRONG, BANDER		
P.O. B	ox 1677	·		SULTE 1420			
ENGLEW	OOD, COLORADO MR DAVE DUBLE	80110		1660 LINCO	LN STREET		
ATTN:	MR DAVE DUBLE	R		DENVER, CO	LORADO 80203		
<u> </u>	ECHNICAL REPORT	· (S)		1TECH	INICAL REPORT (S)		
STATE	OF UTAH			BERCHMAN J	• MARY		
	ON OF OIL & GA	S & MINING		1010 PERE	MARQUETTE BUILDING		
	AKE CITY, UTAH	84116		NEW ORLEAN	s. Louisiana 70112		
1				2			
•	TICS, INC.			2	2017		
	ST HAMPDEN AVE	SULTE 1010)	AMOCO PROD			
	OOD, COLORADO				IFE BUILDING		
-,	tray constants				LORADO 80202		
				ALIN: MPI			

P. O. Box 2794 Casper, Wyoming 82601

GAS ANALYSIS REPORT

Company	Energetics, Inc.	Date_Feb	ruary 2, 1977	Lab. No	22541
Well No.	W-L 0 1 17 7	Location			
Field	Wildcat	Formation	Twin Creek		
County	Summit	Depth	10636-10905_		
State	Utah	Sampling poir	DST No. 1		
Line pressure_	psig; Sample pressure 0	_psig; Temperature	F; Container number	Chem Lab	
Remarks					
	Sampled January 30, 1977				
	Note: No pressure on co	ntainer.			

	Volume %				
Overgen	0				
Oxygen Nitrogen	75 10				
Carbon dioxide	^				
Hydrogen sulfide	–				
AAashaan	16.97	Gallons			
Methane	1 07	per MCF			
Ethane Propane	1 60	0.461			
Iso-butane	0.77	0.251			
N-butane	1.29	0.406			
Iso-pentane.	0.75	0.274			
N-pentane	^ 4/	0.166			
Hexanes & higher		0.350			
Total	100.00	1.908			
GPM of pentanes & higher fraction	0.7	790			
Gross btu/cu. ft. @60° F. & 14.7 psia (dry basis)	4	104			
Specific gravity (calculated from analysis)		966			
Specific gravity (measured)		~ ~ 4 ^			
Remarks: * H ₂ S = Negative to lead acetate	paper.				
<i>L</i>					
	····				

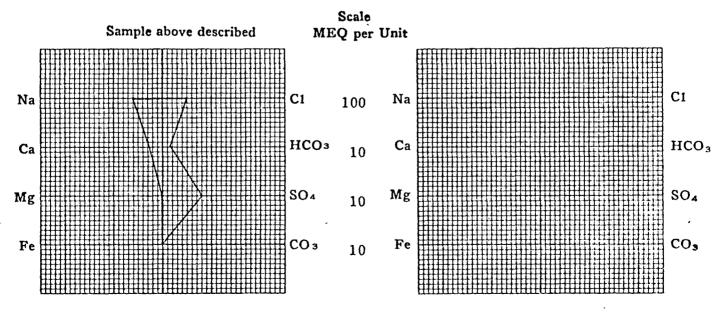
CONFIDENTIAL CHEMICAL & GEOLOGICAL LABORATORIES

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

WELL NO	Energetics, Inc. Weber Coal Co. 13-3 Wildcat Gummit	LOCATION FORMATION	1977 LAB NO. NW SW 3-2N-5E	
	Jtah		0 1 101	(6/24/77)
REMARKS & CON	NCLUSIONS:			
Cations Sodium	710	Sulfate	mg/1 2550 15700	meq/1 53.04 442.74
Lithium Calcium Magnesium	467 23.30	Carbonate Bicarbonate	1769	29.01
Tota	al Cations 524.79	Tota	al Anions	524.79
NaC1 equivalent, m	s, mg/1 31378 29720 7.1	Specific resistance @ Observed Calculated	$\frac{0.25}{0.23}$	_ ohm-meters

WATER ANALYSIS PATTERN

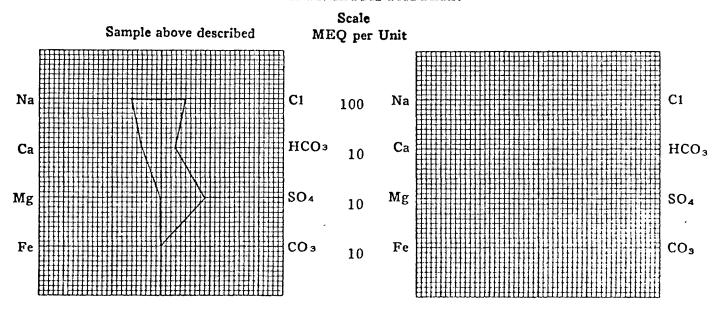

Scale Sample above described MEQ per Unit C1 C1 Na Na 100 HCO₃ HCO₃ Ca Ca 10 SO₄ SOA Mg Mg 10 СОз \mathbf{Fe} CO3 Fe 10

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR	Energetics, Inc.		DATE February	24, 1977 LAB NO	22702-1
WELL NO	Weber Coal 13-3		LOCATION		
FIELD	Wildcat		FORMATION		
COUNTY	Summit		INTERVAL	10631-11630	
STATE	Utah		SAMPLE FROM	DST No. 5 (Sam	pler)
REMARKS & C	Sample No. 5: No Sample No. 6; No	. 2, Chlorid 3, Chlorid . 4, Chlorid	e, mg/1 e, mg/1	374 370 322	00 00 00
	Sample No. 7; No	. 5, Chlorid	e, mg/1	278	00
Cations	mg/1	meq/1	Anions	mg/1	meq/1
Sodium	<u>13537</u>	588.85	Sulfate	3780	78.62
Potassium	494	12.65	Chloride	19000	535.80
Lithium			Carbonate		
Calcium	531	26.50	Bicarbonate	1049	17.20
Magnesium	44	3.62	Hydroxide	·	
Iron			Hydrogen sulfide -		
-	Total Cations	631.62	Total	Anions	631.62
NaC1 equivalent,	olids, mg/1 mg/1	37903 35797 7.8	Specific resistance @ 6 Observed - Calculated -	8°F.: - 0.20 0.19	ohm-meters

WATER ANALYSIS PATTERN


(Na value in above graphs includes Na, K, and Li)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorns calculation from components

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

WELL NO. W FIELD W COUNTY Si	nergetics, Inc. eber Coal 13-3 ildcat ummit tah		IN LUX VAL	31-11630 No. 5 (Samp	
	ample No. 9; No. ample No.10; No. ample No.11; No.	7, Chloride 8, Chloride 9, Chloride	6, Chloride, mg/1 - , mg/1 , mg/1 , mg/1 de, mg/1		- 23800 - 21200 - 20600
Cations Sodium Potassium Lithium Calcium Magnesium Iron	mg/1 13827 526 779 28	meq/1 601.49 13.47 38.87 2.30	Anions Sulfate	mg/1 4400 19000 - 1757 Present	meq/1 91.52 535.80 28.81
Total dissolved solid: NaC1 equivalent, m Observed pH	s, mg/1	39425 36823 7.1	Specific resistance @ 68°F.: Observed Calculated		ohm-meters

WATER ANALYSIS PATTERN

(Na value in above graphs includes Na, K, and Li)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components

February 25, 1977

State of Utah Department of Natural Resources Devision of Oil, Gas, and Mining 1588 West North Temple Salt Lake City, Utah 84116

Attn: Kathy Ostler

Records Clerk

Re: Weber Coal Co. 13-3

Sec 3-T2N-R5E Summit Co., Utah

Gentlemen:

Thank you for your letter concerning the confidential status of the captioned well. This is to confirm that we are drilling the well "tight" and we request that you withhold the information on the well from open file.

Thank you for your cooperation.

Very truly yours,

E. L. Freund

Vice President - Engineering & Production

ELF/kr

CORE ANALYSIS RESULTS

COLORADO, ENERGETICS, FUELCO, IMPEL

NO. 13-3 WEBER COAL CO.

WILDCAT

SUMMIT COUNTY, UTAH

160 = 2, 419, 200 370 = 4, 538, 400 Memo To File:

Re: Colorado Energetics

13-3 Weber Coal Co.

NW SW Sec. 3, T. 2 N., R. 5 E.

Summit County

Verbal permission has been given to Colorado Energetics on June 30, 1977, to plug and abandon the above well. The tentative information, presented in a somewhat haphazard manner, is as follows:

Total depth	17,323'
Casing 13 3/8	3,039' to surface
9 5/8	10,663' to 2,500'
7 5/8	15,675' to 9,958'

No casing will be pulled, so in effect, the well is cased from top to bottom.

The perforated intervals are isolated by the placement of the following plugs:

C.I.B.P.	15,888*
C.I.B.P.	15,380'
C.I.B.P.	14,775'
Cement plug	11,396'-11,550'
C.I.B.P.	11,332'
C.I.B.P.	11,200'
Proposed perfs:	10,942'-10,992'

(All cast iron bridge plugs have 10 sacks of cement set on top.)

Upon testing, a C.I.B.P. will be set 50' above perfs. From this point on, there are two strings of casing cemented to surface. Therefore, the only other plug will be at surface.

The provision for the dry hole marker has been waived and the pipe will be cut off 36" below surface and covered over

PATRICK L. DRISCOLL CHIEF PETROLEUM ENGINEER

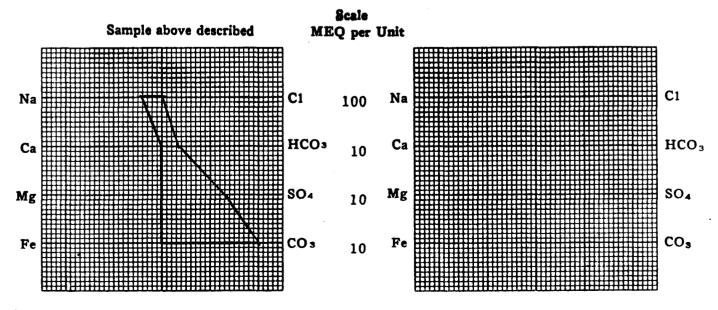
PLD/src

GAS ANALYSIS REPORT

·	CHEMICAL &	GEOLOGICAL P.O. Box 2794 Casper, Wyoming 82602		ATORIES IFIDENTIAL
		GAS ANALYSIS REPO	RT	iciUFI.
	Enongotics Tre	~ 71	12 10731	<i>((1)</i>
Company	Energetics, Inc. Weber Coal Co. 13-3		y 12, 1977 NW 3W 3	Lab. No. 24208
Well No Field	Wildcat	Location	Thaynes	-2N-3E
County	Summit	Formation	14648-1	1672
State	Utah	Depth Sampling poi		
	psig; Sample pressure			
	Sample No. 1 (N ₂ use	ed in treatment).		
	Component	ALTHU IST	Mole % or Volume %	
	Oxygen	100	0	
	Nitrogen	. · .	93.11	
	Carbon dioxide		0	
	Hydrogen sulfide		*	
	Methane		2.17	Gallons
	Ethane		4.37	per MCF
	<u>.</u>		•	0.093
				0
			_	
	•			
				0 005
	Hexanes & higher		0.01	0.005
	•	Total		0.098
	GPM of pentanes & higher fr	action		005
	Specific gravity (calculated fr	14.7 psia (dry basis)om analysis)		108 963
	Specific gravity (measured)		0_9	965
	Remarks: * H_S = Neg	mative to lead acetate p	aper.	

P.O. Box 2794 Casper, Wyoming 82602

GAS ANALYSIS REPORT


Company	Energetics, Inc.	Date	July 12,	1977		_Lab. No	24208-2
Well No	Weber Coal Co. 13-3	Location_		NW SW	3-2N-5E		
Field	Wildcat	Formatio	n	Thayne	s		
County	Summit	Depth		14648-	14672		
State	Utah	Sampling	point	Produc	tion		
ine pressure	psig; Sample pressure <u>15</u> _psig; Temp			ntainer nu	mber	Virg's	
Remarks		·					
	Sample No. 2 (N used in treatmen	nt).					
	6						
	•		M	ole % or			
	Component			lume %		•	
	•						•
	Oxygen			0			
•	Nitrogen			<i>85.57</i>			
	Carbon dioxide			0			
	Hydrogen sulfide			*			
	Methane			13.89	Galk	ons	
	Ethane			0.50	per A	ACF	
	Propane			0.03	0.00		
	Iso-butane			0		0	
	N-butane	· · · · · · · · · · · · · · · · · · ·		0_		0	
	Iso-pentane			0		0	
	N-pentane			0_		<u>o</u>	•
	Hexanes & higher			0.01	0.00	<u> </u>	

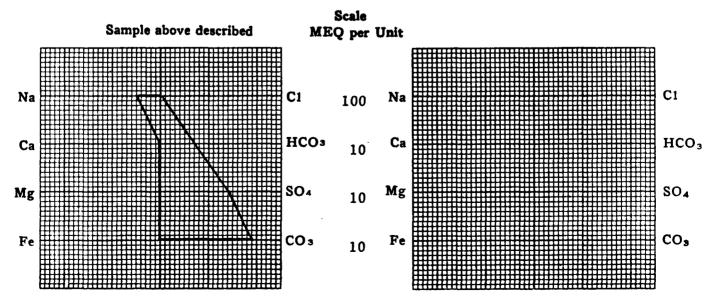
	Total	al	1	00.00	_0.01	3	
	GPM of pentanes & higher fraction	• • • • • • • • • • • • • • • • • • • •		0	.008		
	Gross btu/cu. ft. @60° F. & 14.7 psia (dry ba				151		
	Specific gravity (calculated from analysis)				910		
	Specific gravity (measured)	• • • • • • • • • • • • • • • • • • • •			910		
	Remarks: * H ₂ S = Nogative to lea	d acetat	e paper.	 			
					 		

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

		-3	DATE July 14, 197 LOCATION N FORMATION INTERVAL SAMPLE FROM	IW SW 3-	
REMARKS & CONC		ss. dark colo	red water.		
Cations	mg/1	meq/1	Anions	mg/l	meq/1
		385.00			131.04
Occurre	- <u>8851</u> - <u>98</u>	2.51	Sulfate	900	22.56
	•		Chloride Carbonate	1000	199.80
	33	1,65	Bicarbonate	2104	36.01
Magnesium		0.25		•	
Iron	•		Hydrogen sulfide		
Total	Cations	389.41	Total A	Anions	389,41
Total dissolved solids, NaC1 equivalent, mg/ Observed pH	1	21089	Specific resistance @ 68° Observed - Calculated -	F.: 0.43 0.32	ohm-meters ohm-meters

WATER ANALYSIS PATTERN



P. O. Box 2794 Casper, Wyoming

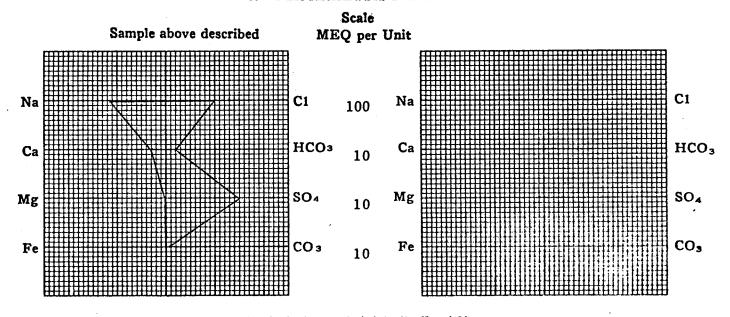
WATER ANALYSIS REPORT

WELL NO. Well Wil	ergetics, Inc. per Coal Co. 13 dcat mit h	-3	DATE July 14, LOCATION FORMATION INTERVAL SAMPLE FROM	15675-15874	o. 24209-3 mpler) 6/17/77
REMARKS & CONC	LUSIONS: , low water-lo	ss, dark col	ored water.		
Cations Sodium	mg/1 - 9723 - 88 - 33 - 3	meq/1 422.97 2.25 1.65 0.25	Anions Sulfate	mg/1 - 6800 - 1200 - 5640 - 3904	meq/1 141.44 33.84 187.81 64.03
Total	Cations	427.12	Total	l Anions	427.12
Total dissolved solids, NaC1 equivalent, mg/2 Observed pH	-	25410 22609 9.9	Specific resistance @ Observed Calculated	68°F.: - 0.44 - 0.30	ohm-meters

WATER ANALYSIS PATTERN

(Na value in above graphs includes Na, K, and Li)

NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter

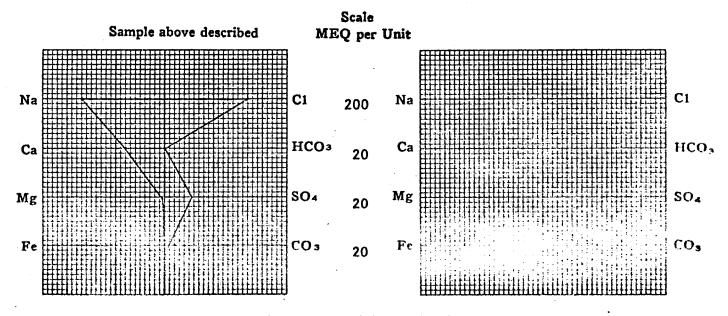

Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR	Energetics, Inc		DATE February	24, 1977 LAB N	o. 22701
WELL NO	Weber Coal 13-3		LOCATION		
FIELD	Wildcat		FORMATION	Nugget	
COUNTY	Summit		INTERVAL	11480-11521	
STATE	Utah		SAMPLE FROM	DST No. 2 (Sam	pler) (2/10/77)
REMARKS & C	onclusions: Sam	ple No. 2; To	op recovery, Chlor	ride, mg/1	- 39800
	Sample No. 3;	No. 2, Collar	Stands, Chloride	, mg/1	- 34400
	Sample No. 4;	No. 3, Collar	Stands, Chloride	mg/1	- 37600
	Sample No. 5;	No. 4, Collar	Stands, Chloride	, mg/1	- 3 9000
	Sample No. 6;		Stands, Chloride		
Cations Sodium Potassium Lithium Calcium Magnesium	mg/1 26419 348 687 28	meq/1 1149,22 8,91 34.28 2.30	Anions Sulfate Chloride Carbonate Bicarbonate Hydroxide Hydrogen sulfide -	mg/1 7400 36000 216 1122	meq/1 _153.92 _1015.20
-	Total Cations	_ 1194.71	Tota	al Anions	1194.71
•	mg/1	$\begin{array}{c} 71651 \\ \hline 67751 \\ \hline 9.3 \end{array}$	Specific resistance @ Observed Calculated	68°F.: - 0.12 0.11	ohm-meters

WATER ANALYSIS PATTERN

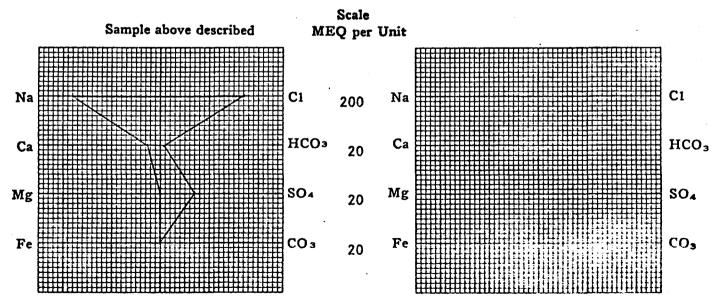

(Na value in above graphs includes Na, K, and Li) NOTE: Mg/1 ::: Milligrams per liter Meq/1 ::: Milligram equivalents per liter Bodium chloride equivalent = by Dunlap & Hawthorne calculation from components

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

			DATE February A LOCATION FORMATION INTERVAL SAMPLE FROM	Twin Creek 10636-10905	NO. 22539-3 ottom) (1-30-77)
REMARKS & CONCLU Muddy					
Cations Sodium	mg/1 76341 1186 3160	meq/1 3320.83 30.36 157.68	Anions Sulfate Chloride Carbonate Bicarbonate	mg/1 5400 - 120000 - 480 - 488	meq/1 112.32 3384.00 15.98 8.00
Magnesium	139	3520.30	Hydroxide Hydrogen sulfide - Tota	1 Anions	3520.30
Total dissolved solids, mg. NaC1 equivalent, mg/1 - Observed pH		206946 204244 10.3	Specific resistance @ Observed Calculated	68°F.: - 0.06 0.05	Omm-merers

WATER ANALYSIS PATTERN

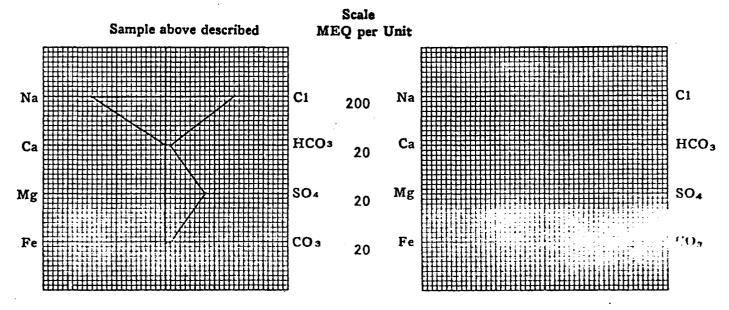


P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR Energetics, Inc. WELL NO. Weber Coal 13-3 FIELD Wildcat COUNTY Summit STATE Utah		DATE February 7 LOCATION FORMATION INTERVAL SAMPLE FROM	Twin	Creek -10905	NO	
REMARKS & CONCLUSIONS:Watery mud.				-		
Cations mg/1 Sodium 82393 Potassium 865 Lithium 1008 Calcium 83 Iron	meq/1 3584.08 22.14 50.30 6.82	Anions Sulfate Chloride Carbonate Bicarbonate Hydroxide Hydrogen sulfide -		mg/1 6680 124000 168 1342		meg/1 138.94 3496.80 5.59 22.01
Total Cations	3663.34	Tota	l Anion			3663.34
Total dissolved solids, mg/1 NaC1 equivalent, mg/1 Observed pH	215858 212296 9.3	Specific resistance @ Observed Calculated	68°F.:	- 0.0		ohm-meters

WATER ANALYSIS PATTERN

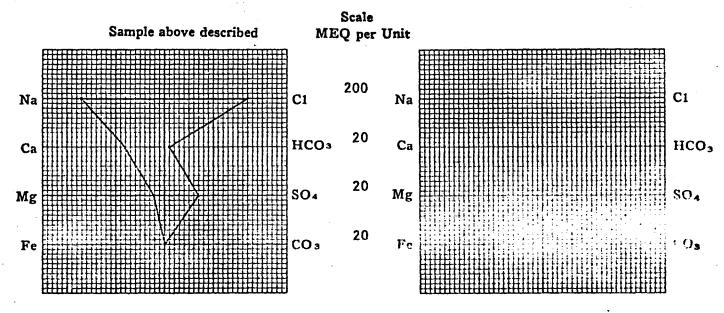

(Na value in above graphs includes Na, K, and Ll)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR Energetics Inc. WELL NO Weber Coal 13-3 FIELD Wildcat COUNTY Summit STATE Utah	DATE February 7, 1977 LAB NO. 22539-1 LOCATION Twin Creek INTERVAL 10636-10905 SAMPLE FROM DST No. 1 (Top) 1-30-77
REMARKS & CONCLUSIONS:	
Cations mg/1 meq/1 Sodium - - 70456 3064.83 Potassium - - 528 13.52 Lithium - - 0 0	Anions mg/1 meq/1 Sulfate 7960 165.57 Chloride 102000 2876.40 Carbonate 576 19.18 Bicarbonate 1049 17.20
Magnesium 0 0 Iron	Hydroxide
Total dissolved solids, mg/1	Specific resistance @ 68°F.: Observed 0.064 ohm-meters Calculated 0.054 ohm-meters

WATER ANALYSIS PATTERN


(Na value in above graphs includes Na, K, and Li)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components

P. O. Box 2794 Casper, Wyoming

WATER ANALYSIS REPORT

OPERATOR	Energetics, Inc.		DATE February 7	<u>, 1977</u> LAB 1	NO. 22539-4
WELL NO	Weber Coal 13-3		LOCATION		
FIELD	Wildcat		FORMATION	Twin Creek	
COUNTY	Summit		INTERVAL	10636-10905	
STATE	Utah		SAMPLE FROM	DST No. 1 (MF	E) (1-30-77)
	CONCLUSIONS:Muddy water.				
Cations	mg/1	meq/1	Anions	mg/1	meq/1
متعنستيم	76163			6520	135.62
Sodium	1140	3313.08	Sulfate	120000	3384.00
Potassium -		29.18	Chloride	- 120000	3304.00
Lithium	3160	157.68	Carbonate	1171	19.20
Calcium	473	38.88	Bicarbonate	1177	17.20
Magnesium -	· - <u></u>	30.00	Hydroxide		
Iron ·			Hydrogen sulfide -		
	Total Cations	3538.82	Tota	l Anions	3538.82
	solids, mg/1	208033 204827 7.1	Specific resistance @ Observed Calculated	68°F.: 0.050	

WATER ANALYSIS PATTERN

(Na value in above graphs includes Na, K, and Li)
NOTE: Mg/1=Milligrams per liter Meq/1= Milligram equivalents per liter
Sodium chloride equivalent=by Dunlap & Hawthorne calculation from components

Release Date:
1-15-18

P

July 26, 1977

CONFIDENTIAL

State of Utah
Department of Natural Resources
Division of Oil, Gas & Mining
1588 West North Temple
Salt Lake City, Utah 84116

RECFINET JUL 28 1977

Re: Weber Coal 13-3

NW/4 SW/4 Sec 3-T2N-R5E

Summit Co., Utah

Gentlemen:

Enclosed please find the well completion report on the subject well. We are temporairily abandoning the well at this time and request that all data and logs be kept confidential for the (4) month period.

Yours very truly,

K. G. Cervenka Operations Manager

Attachment

KGC/kr

Form OGC-3

STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MINING

SUBMIT IN DUPL	_:`E*
(See other instruction	ons
on reverse side)	

CONFIDENTIAL

WELL COMPLETION OR RECOMPLETION REPORT AND LOG* 18. TYPE OF WELL: VIEL		 										
DATE RPUDDED 18. PAIR PRODUCTION HOLD 17. PATE COMPLETION—ON THIS COMPLETION—OF THIS COMP	WELL CO	MPLETION (OR RECO	MPLET	ION	REPORT	AND	LOG	* 6.	IF INDIAN,	ALLOTTEE OR TE	LIBE NAM!
NEWL WORK POPERATOR WORK WILL WORK ENT DEEP BACK PILOS 2. MANG OF OPERATOR COLORADO Energetics, IncFuelco 3. Andres of OPERATOR 4. LOCKTION OF WILL (Report Inordine oberty and in accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty and in accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty and in accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty and in accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty and in accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty on a state of the proper oberty on accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty on accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty on accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty on accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty on accordance with any State requirements) 101 4. LOCKTION OF WILL (Report Inordine oberty) 102 4. LOCKTION OF WILL (Report Inordine oberty) 102 4. LOCKTION OF WILL (Report Inordin oberty) 102 4. LOCKTION OF WILL (Report Inordin o	1s. TYPE OF WEL	L: OII.	GAS	٦ .		Other Temp	o. Ab	pandone	ed 7.	UNIT AGREE	MENT NAME	
WELL OVER EN PARK BEBANE OTHER AND A TO 22. IF INTERPRET MON MARKE COMPL. 13. BLEET TOOLS OF THE EXCENS OF WELL (Report Local Energy and in accordance with any State requirement). 191 At too prod. interval reported below None At too prod. interval reported below None At total depth at 17,284 2074 FWL & 257' FSL At total depth at 17,284 2074 FWL & 257' FSL A total depth at 17,284 2074 FWL & 257' FSL A total depth at 17,284 2074 FWL & 257' FSL A total depth at 17,284 2074 FWL & 257' FSL A pare spudged 16, Date Face at 17, Date compt. (Ready to prod.) 18, Leptations (pr. Benet. Science at 18, Benet. Science at 17, 284' 2074 FWL & 257' FSL A pare spudged 16, Date Face at 17, Date compt. (Ready to prod.) 18, Leptations (pr. Benet. Science at 18, Benet. Science at 17, 232' MD A production interval to 270 38' Fulls, Back f.D. MA TO 22. IF INTERPRET COMPT. (Pr. Benet. Science at 18, Benet. Science at 17, 232' MD A production interval for the production compt. (Ready to prod.) 18, Leptations (pr. Benet. Science at 18, Benet. Science at 18	b. TYPE OF COM		" " " LUL L		7K1 []	Other 15th		231130110	_			
Colorado Energetics, IncFuelco 3. ADDRESS OF OPERATOR 4. LOCATION OF WILL (Report location cierry and in accordance with any State requirement) 1071 4. LOCATION OF WILL (Report location cierry and in accordance with any State requirement) 1071 4. LOCATION OF WILL (Report location cierry and in accordance with any State requirement) 1071 4. TOP TOP CONTROL (Red y to pred) 4. TOP CONTROL (Red y to pred) 5. DATE SPUDDED 4. PRINTIP NO. 4. PRINTIP NO			PLUG BACK	DIF RES	F. svr.	Other	•		8.	FARM OR L	EASE NAME	
ADDRESS OF OFERATOR 333 M. Hampden Ave., Englewood, CO 80110 Lication of yeth. (Report location clearly and in accordance with any State requirements): 1971 At surface 500' FWL & 1400' FSL (NW/4 SW/4) At top prod. interval reported below None At total depth at 17,284' 2074' FWL & 257' FSL At total depth at 17,284' 2074' FWL & 257' FSL DATE SPUDDED 15. DATE. The REACHED 17. DATE COMPL. (Ready to prod.) 18. Levations (or, lett., m., m., or block and set of prod.) 19. Levations (or, lett., m., m., or block and set of prod.) 19. Levations (or, lett., m., m., or block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.) 19. Levations (or, lett., m., or, block and set of prod.)	2. NAME OF OPERAT	ron										
333 W. Hampden Ave., Englewood, CO 80110 DEFFERENCE OF WELL (Report location clearly and in accordance with any State requirements) 1971 At surface 500' FWL & 1400' FSL (NW/4 SW/4) At top prod. interval reported below None At total depth at 17,284' 2074' FWL & 257' FSL At total depth at 17,284' 2074' FWL & 257' FSL AT SPENDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 16. DATE -8- REACHED 17. DATE COMPL. (Ready to prod.) DATE SPUDDED 17. DATE COMPLETION -70. DATE C	Colorado En	nergetics, I	ncFuelc	0			(13.4.1	1.7	9.	WELL NO.		
At top prod. interval reported below None At top prod. interval reported below None At total depth at 17,284 (2074' FML & 257' FSL) A 14. FERNITY NO. A 25-17-76 DATE ISSUED A 30-043-30024 5-17-76 Sec 3-T2N-R5E Sec 3-T2N-R5E 12. COUNTY OR 13. STATE SUMMIT U Utah S. DATE BRUDDED 13. DATE ISSUED A 30-043-30024 5-17-76 SUMMIT U Utah S. DATE BRUDDED 14. PERNITY NO. A 30-043-30024 5-17-76 SUMMIT U Utah S. DATE BRUDDED 15. DATE BRUDDED 16. DATE TWO BRACK LD., NO A TYD 22. IF MILTIPLE COMPL., NO AND TYD)* 17. 323' MD Surface 17. 323' MD Surface SCASING RECORD CASING RECORD (Report all strings set in well) A 11				00	00770	150	4	inch.			BOOL OF WILLD	7.450
At auriace 500' FWL & 1400' FSL (NW/4 SW/4) At top prod. interval reported below None At total depth at 17,284' 2074' FWL & 257' FSL 14. FERNIT NO. 14. PERINT NO. 14. PERINT NO. 14. PERINT NO. 15. DATE ISSUED 43-043-30024 5-17-76 SUBMIT 1 Utah S. DATE BPUDBED 16. DATE TOP LOCAL DEPTH 17. DATE COMPL. (Ready to prod.) 18. ELEVATIONS (DF. REB. RT. OR. ETC.)* 19. ELEV. CABINGHEAD SUBMIT 19. ELEV. CABINGHEA	333 W. Hami	oden Ave., b	ng lewood,	COrdano	80110 e with an	y State requir	RECE	111	10.		•	, A.S.
At total depth at 17, 284 2074 FWL & 257 FSL At total depth at 17, 284 2074 FWL & 257 FSL A 14. FRENIT NO. 14. PRENIT NO. 14. A043-30024 S417-76 15. DATE SPUDDED 16. DATE SPUDDED 17. DATE COMPL. (Reddy to prod.) 18. BEFATIONS (OF, RES. R.T. GR. PTC.)* 19. ELAY. CASINGREAD 5-26-76 6-15-77 19. ELAY. CASINGREAD 5-28 FN HULTIPLE COMPL. 17. 323 MD SUFFACE 17. 323 MD SUFFACE 17. 323 MD SUFFACE 17. DATE COMPLETION—TOP, BOTTON, NAME (MD AND TVD)* 18. BALLES NOTE NONE 19. ELAY. CASINGREAD 10. DIPMETER LOGS RUN DIPMETER LOGS RUN DIPMETER SUFFACE CASINGREAD LISTING RECORD CASINGREAD LISTING RECORD AMOUNT PULLES S. CASINGREAD CASINGREAD LISTING RECORD AMOUNT PULLES 13. 3/8" 61 30. TUBING RECORD AMOUNT PULLES 15. S 62. 8 10. AMOUNT PULLES 15. S 62. 8 10. AMOUNT PULLES 15. S 62. 8 10. AMOUNT PULLES 15. S 64. 8 10. AMOUNT AND KIND OF MATERIAL USED 10. PRENODLATION RECORD (Interval, size and number) 5. S 64. 8 10. FRENODLATION RECORD (Interval, size and number) 5. S 64. 8 10. PRENODLATION RECORD (Interval, size and number) 5. S 675 643 PRODUCTION NOTE SIZE ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED 10. PRENODLATION NOTE SIZE ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED ACID, SHOT, FRACTURE, CE		_	=			1	IUL 2	58 Jain	11.	SEC., T., R.	, M., OR BLOCK A	ND SURVE
14. PERSIST NO. 12. COUNTY OR 13. STATE 14. O423-30024 5-17-76 15. DATE SPUNDED 16. DATE SPUNDED 16. DATE SPUNDED 16. DATE SPUNDED 17. DATE COMPL. (Ready to prod.) 18. ELEVATIONS (UP, REB. RT, GR. ETC.)* 19. ELEV. CABINGHEAD 17. DATE COMPL. (Ready to prod.) 18. ELEVATIONS (UP, REB. RT, GR. ETC.)* 19. ELEV. CABINGHEAD 17. DATE COMPL. 18. DATE COMPL. 18. ELEVATIONS (UP, REB. RT, GR. ETC.)* 19. ELEV. CABINGHEAD 17. DATE COMPL. 19. ELEV. CABINGHEAD 19. ELEV. CABINGHE			Nono	•						OR AREA		
14. FREMIT NO. DATE 18SUED 12. COUNTY OF SALES 13. STATE 143-043-30024 5-17-76 S. LIMBI			AND THE RESIDENCE AND PROPERTY.	& 25	7' FSI		C \$5. 1	Σ: - 27. X		Sec 3-	T2N-R5E	
3-043-30024 5-17-6 Summit Utah S-17-6 Summit		,	\				DATE IS	SSUED	12.		13. STA	TE
10. Letting				43	-043-3	30024	5-1	7-76	' 9	Summit	Utah	
17. 323' MD Surface BILLED BY ALLER TOOLS CABLE TOOLS 17. 323' MD Surface BILLED BY ALLED BY ALLER BY	5. DATE SPUDDED	16. DATE T.B. REA	CHED 17. DATE	E COMPL.	(Ready t	o prod.) 18.	ELEVA	TIONS (DF,	RKB, RT, GR	, ETC.)*	19. ELEV. CASIN	GHEAD
17.323' MD Surface												moo: ~
None				TVD 22					D BY		CABLE '	TOOPS
None Bit Sonic CNL Density Dipmeter Temperature Lod & Cement Bond Laterolog Yes				, BOTTOM,	NAME (1	MD AND TVD)			- a	<u> </u>		
BHC Sonic. CNI Density. Dipmeter. Temperature Log & Cement Bond log S. CASING RECORD (Report all strings set in well) CASING SIZE WEIGHT, LE/FT. DEPTH SET (MD) HOLE SIZE CEMENTING RECORD None None None 13 3/8" 61 3039 17 ½" 2615 SX to SUrface None 5/8 & 9 7/8" 40, 43.5, 47 10663 12 ½" 900 SX None LINER RECORD 30. TUBING RECORD None SIZE TOP (MD) BOTTOM (MD) SACKS CEMENT* SCREEN (MD) SIZE DEPTH SET (MD) PACKER SET (MD) 7 5/8" 9958 15,675 643 None 1. PERFORATION RECORD (Interval, size and number) 5,675-15,874 Open hole 4,648-14,672 23 gr., 48 holes 1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 72 holes ATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) ATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) TEST PERFORM OIL—BEL. GAS—MCF. WATER—BEL. GAS—OIL RATIO						·			,		SURVEY N	IADB
BHC Sonic. CNI Density. Dipmeter. Temperature Lod & Cement Bond log Yes CASINO SIZE CASINO SIZE CASINO SIZE CASINO SIZE WEIGHT, LE-/FT. DEPTH SET (MD) DIDENSITY DETH SET (MD) HOLE SIZE CASINO SIZE WEIGHT, LE-/FT. DETH SET (MD) SON SON NONE NONE DETH SET (MD) DEPTH SET	None										Dipmeter	Surv
BHC Sonic, CNL Density, Dipmeter, Temperature Log & Cement Bond log		ND OTHER LOGS RU	, Duai in	ducti	on La	terolog,	Dual	Later	olog,	ا نا		
CASING SIZE WEIGHT, LB./FT. DEPTH SET (MD) HOLE SIZE CEMENTING RECORD AMOUNT PULLEI 13 3/8" 61 3039 17 ½" 2615 SX to SURFACE None None 5/8 & 9 7/8" 40, 43.5, 47 10663 12 ½" 900 SX None None S3.5 & 62.8 12 ½" 900 SX None		CNL Density	<u>. Dipmete</u>	Ter Ter	mperat	ture Log	& Ce	ement B	ond loc	,	Yes	·
13 3/8"		WEIGHT LB./FT					set in		TING RECOR		l awayym	
12 2 900 SX None 53.5 & 62.8 12 2 900 SX None 53.5 & 62.8 12 2 900 SX None 900 SX None 900 SX None 900 SX None 900 SX	 			- ()	·l		261					PULLED
S. S. S. S. S. S. S. S.			— 	· · · · · · · · · · · · · · · · · · ·	·] 				. 			
SIZE TOP (MD) BOTTOM (MD) SACKS CEMENT* SCREEN (MD) SIZE DEPTH SET (MD) PACKER SET (MI 7 5/8" 9958 15,675 643 NONE 1. PERFORATION RECORD (Interval, size and number) 5,675-15,874 Open hole 4,648-14,672 23 gr., 48 holes 1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 94 holes 0,704-10,740 23 gr., 72 holes 3.* PRODUCTION PRO	<u>,, </u>				1-4		. <u> </u>	7 7/				
SIZE TOP (MD) BOTTOM (MD) SACKS CEMENT* SCREEN (MD) SIZE DEPTH SET (MD) PACKER SET (MI)												
7 5/8" 9958 15,675 643 None 1. PERFORATION RECORD (Interval, size and number) 5,675-15,874 Open hole 4,648-14,672 23 gr., 48 holes 1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 94 holes 0,704-10,740 23 gr., 72 holes 3.* PRODUCTION ATE FIRST PRODUCTION PRODUCTION PRODUCTION PRODUCTION PRODUCTION ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR TEST PERIOD TEST P						; _		·	TUBI	G RECOR		
1. PERFORATION RECORD (Interval, size and number) 5,675-15,874 Open hole 4,648-14,672 23 gr., 48 holes 1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 94 holes 0,704-10,740 23 gr., 72 holes 3.º PRODUCTION ATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) Temp. Abandoned ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR TEST PERIOD TOTAL ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED SEE ATTACHED SHEET Temp. Abandoned Test Period Test					EMENT*	SCREEN (MD	· ' -		DEPTE	SET (MD)	PACKER 81	T (MD)
5,675-15,874 Open hole 4,648-14,672 23 gr., 48 holes 1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 94 holes 0,704-10,740 23 gr., 72 holes PRODUCTION ATE FIRST PRODUCTION ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL—BÉL. GAS—MCF. WATER—BEL. GAS-OIL BATIO	7 3/8	9958	15,6/5	<u> </u>			-	None	-			
5,675-15,874 Open hole 4,648-14,672 23 gr., 48 holes 1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 94 holes 0,704-10,740 23 gr., 72 holes 3.* PRODUCTION ATE FIRST PRODUCTION ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL—BÉL. GAS—MCF. WATER-BEL. GAS-OIL RATIO GAS-OIL RATIO			and number)			82.	ACID	, SHOT, F	RACTURE,	CEMENT	SQUEEZE, ETC.	
1,252-11,266 23 gr., 28 holes 0,945-10,992 23 gr., 94 holes 0,704-10,740 23 gr., 72 holes 3.* PRODUCTION ATE FIRST PRODUCTION PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) WELL STATUS (Producing or shut-in) Temp. Abandoned ATE OF TEST Hours Tested Choke Size PROD'N. FOR OIL—BÉL. GAS—MCF. WATER—BEL. GAS-OIL BATIO TEST PERIOD TEST GAS—MCF. WATER—BEL. GAS-OIL BATIO TOTAL PRODUCTION GAS—MCF. WATER—BEL. GAS-OIL BATIO TOTAL PRODUCTION TEST PERIOD TEST PERIOD TEST PERIOD TOTAL PRODUCTION TEST GAS—MCF. WATER—BEL. GAS-OIL BATIO TOTAL PRODUCTION TEST PERIOD TEST PERIOD TEST PERIOD TEST PERIOD TOTAL PRODUCTION TEST PERIOD TEST PERIOD TEST PERIOD TOTAL PRODUCTION TEST PERIOD	5,675-15,874	4 Open hole				DEPTH INT	ERVAL	(MD)	AMOUNT	AND KIND	OF MATERIAL U	BED
0,945-10,992 23 gr., 94 holes 3.* PRODUCTION ATE FIRST PRODUCTION PRODUCTI	7,048-14,0/ <i>4</i> 1 252-11 26 <i>0</i>	2 23 gr., 48	holes									
PRODUCTION ATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) WELL STATUS (Producing or shut-in) Temp. Abandoned ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL—BÉL. GAS—MCF. WATER—BEL. GAS-OIL BATIO TEST PERIOD	0.945-10.99	23 gr., 20 23 gr., 94	holes						SEE_ATI	ACHED	SHEET	
ATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) WELL STATUS (Producing or shut-in) Temp. Abandoned ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL—BÉL. GAS—MCF. WATER—BEL. GAS-OIL BATIO	5,704-10,740	5 23 gr.; 72	holes									
ATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping—size and type of pump) Temp. Abandoned ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL—BEL. GAS—MCF. WATER—BEL. GAS-OIL RATIO	3.•				PROI	OUCTION				-		
Temp. Abandoned ATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL—BÉL. GAS—MCF. WATER—BEL. GAS-OIL BATIO	TE FIRST PRODUCTI	ON PRODUCT	ION METHOD (F	lowing, g			ind typ	e of pump)	· · · · · · ·			g or
TEST PERIOD										I		d
	ITE OF TEST	HOURS TESTED	CHOKE SIZE			OIL—BÉL.	1	GAS-MCF.	WA	TER—BBL.	GAS-OIL BAT	011
	OW. TURING PRESS.		:	011-		1	(CT		<u>_</u>			(CORR)
24-HOUR RATE						1		1		"	AN UBBYILL MEL	, vvaa. j
4. DISPOSITION OF GAS (Sold, used for fuel, vented, etc.) TEST WITNESSED BY		AS (Sold, used for fu	el, vented, etc.)	1						WITNESSI	ED BY	
5. LIST OF ATTACHMENTS	5. LIST OF ATTACHM	AENTS										***************************************
Previously sent.	reviously s	ent.										
6. I hereby certify that the foregoing and attached information is complete and correct as determined from all available records	5. 1 nereby certify	that the foregoing	and attached in	rormation	is comp	lete and corre	ct as d	letermined	from all av	allable rec	ords	_
SIGNED CONTROL TITLE Operations Manager DATE 7-26-77	SIGNED	1 ENV	ENE	L TI	rle _C	<u>)peration</u>	s Ma	nager		DATE	7-26-77	

INSTRUCTIONS

General: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases to either a Federal and/or State laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be aubmitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from, the local Federal and/or State office. See instructions on terms 22 and 24, and 33, below regarding separate reports for separate completions.

If not filed prior to the time this summary record is submitted, copies of all currently available logs (drillers, geologists, sample and core analysis, all types electric, etc.), formation and directional surveys, should be attached hereto, to the extent required by applicable Federal and/or State laws and regulations. All attachments should be listed on this form, see items 35.

When 4: If there are no applicable State requirements, locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local State here or predering the space of an experiment of the region of the completion.

When 22 and 24: If this well is completed for separate production from more than one interval completion, so state in tiem 24 show the producing interval completed in the production from more than one interval completion, so state in the 22, and in item 24 show the producing interval and diditional interval to be separately produced, showing the additional data pertinent to such interval.

When 23: "Sacks Cement": Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool.

When 33: Submit a separate completion report on this form for each interval (See Instruction for items 22 and 24 above.)

Nugget 11,606 11,630 Core No.1, Sandstone, scattered shows Twin Creek 10,636 10,905 DST#1, Rec 1131' drilling mud. IF 369, Nugget 11,476 11,630 DST#2, FF 138, FSI 4659 Nugget 11,498 11,630 DST#4 Misrun Nugget 10,631 11,630 DST#5, Rec 8140' drilling mud, 1120' Sulfur water. FI 1108, ISI 4582, FF 4395, FSI 4619 Thaynes 15,675 15,874 DST#6, Rec 3000' water cushion, 8067' drilling mud. (Misrun) IF 1407	37. SUMMARY OF POROUS ZONES: 840w all important fones of porosity and contents thereof Depth interval tested, cushion used, time tool open, plowin	US ZONES:	MARY OF POROUS ZONES: SHOW ALL IMPORTANT SONES OF POROSITY AND CONTENTS THERSOF; DEPTH INTERVAL TESTED, CUBBION USED, TIME TOOL OPEN, PLOWING	18 THERBOF; CORED INTERVALA; AND ALL DRILL-STEM TESTS, INCLUDING EN. FLOWING AND SHUT-IN PRESSUESS, AND RECOVERIES	38. GBOLOG	GEOLOGIC MARKERS	
reek 10,636 11,630 Core 10,636 10,905 DST#1 ISI 4 11,480 11,521 DST#2 ISI 4 11,498 11,630 DST#5 11,630 DST#5 sulfu 4395, sulfu	FORMATION	TOP	BOTTOM	description, contents, etc.	,	TOP	
reek 10,636 11,630 Core 11,480 11,521 DST#1 II,498 11,630 DST#3 II,498 II,630 DST#5 II,630 DST#5 Sulfu 4395, s 15,675 15,874 DST#6 drill						MEAS. DEPTH	TRUB VBRT. DBPTH
reek 10,636 10,905 DST#1 II,480 11,521 DST#2 ISI 4 II,498 II,630 DST#5 Sulfu 4395, sulfu 4395, solidarillo,675 15,874 DST#6 drill	-	11,606	11,630	Core No.1, Sandstone, scattered shows			
11,480 11,521 DST#2 11,475 11,630 DST#3 11,498 11,630 DST#4 10,631 11,630 DST#5 sulfu 4395, s 15,675 15,874 DST#6		10,636	10,905	DST#1, Rec 1131' drilling mud. IF 369,	Kelvin Morrison	Surface 7698	
11,480 11,521 11,475 11,630 11,498 11,630 10,631 11,630				ISI 4130, FF 424, FSI 2852	Stump	8000	
11,475 11,630 11,498 11,630 10,631 11,630 15,675 15,874	ugget	11,480	11,521	DST#2, Rec 313' water cut mud. FI 76,	Preuss Salt	8070 9058	
11,475 11,630 11,498 11,630 10,631 11,630 15,675 15,874	1,			ISI 4722, FF 138, FSI 4659	Twin Creek	9440	:
11,498 11,630 10,631 11,630 15,675 15,874		11,475	11,630		Nugget Chinle	11,464	
10,631 11,630 15,675 15,874		11,498	11,630		Ankareh	13,165	
10,631 11,630 15,675 15,874			1		Thaynes	14,088	
15,675 15,874		10,631	11,630	DST#5, Rec 8140' drilling mud, 1120'	Woodside	15,135	
15,675 15,874	-			Sultur Water, Fi 1108, 151 4582, FF 4395, FSI 4619	2nd Thaynes 2nd Ankareh	15,540 16,586	
15,6/5 15,8/4	<u></u>		f (
מנוזווון וומס. (מוזצרמת) זר ו40		15,6/5	15,8/4	USI#6, Rec 3000' water cushion, 8067'			
				ariiing maa. (Misrun) ir 140/	-		
	-					*****	
	-						3 4

ACID, SHOT, FRACTURE, CEMENT SQUEEZE, ETC.

Depth Interval (MD)	Amount and kind of Material used
15,675-15,874' 14,648-14,672' 11,252-11,266' 10,945-10,992' 10,704-10,740'	8000 gal 7½% HCL, AL.B.P. & 3 sx at 15,874' 8000 gal 7½% HCL, C.I.B.P. at 15,380' 8000 gal 7½% HCL, C.I.B.P. at 14,475' 7500 gal 7½% HCL, C.I.B.P. at 11,199' 7300 gal 7½% HCL, C.I.B.P. at 10,875', C.I.B.P. at 9960', 10 sx cement surface w/bolted steel plate.

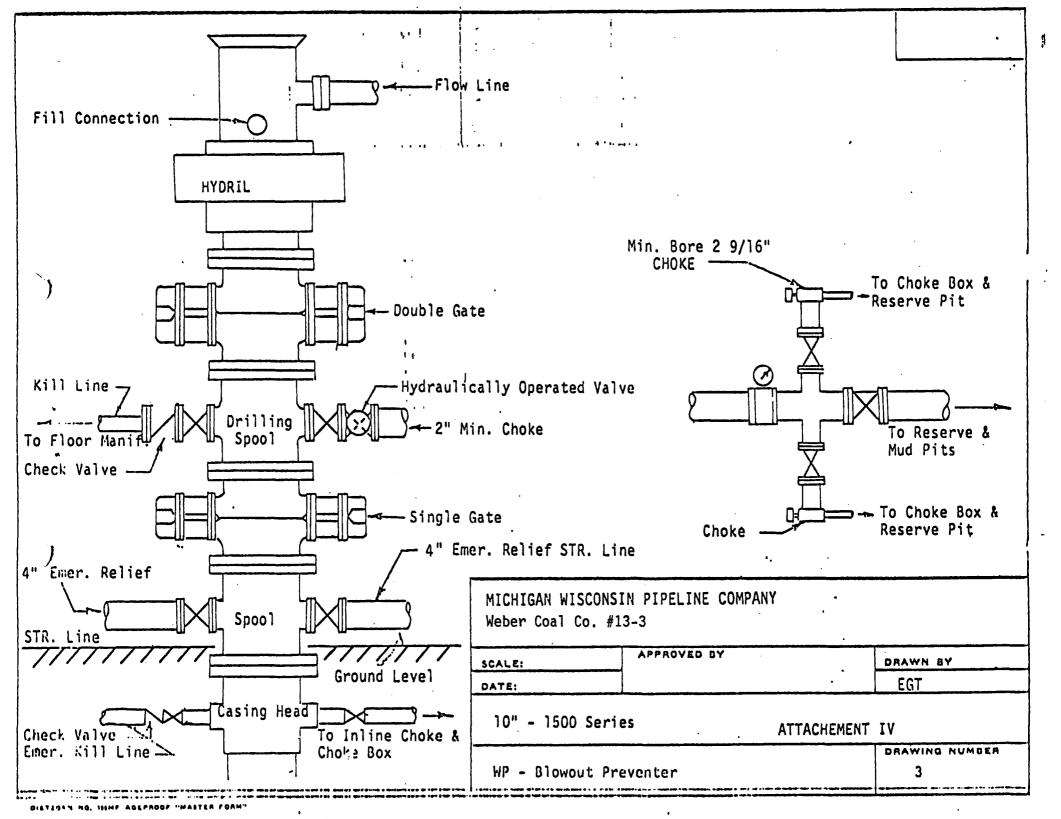
Form DOGC-1a

STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES

SUBMIT IN TRIPLICATE* Other instructions on

5. Lease Designation and Serial No. DIVISION OF OIL & G GAS, & MINIA 6. If Indian, Allottee or Tribe Name APPLICATION FOR PERMIT TO DRILL ODEEPEN. PAGE BACK 1a. Type of Work 7. Unit Agreement Name DEEPEN K ÝLUG BACK 🗌 DRILL | b. Type of Well Multiple Zone 8. Farm or Lease Name $_{\mathrm{Well}}^{\mathrm{Oil}}$ Single X Gas Well Other Weber Coal Co. 2. Name of Operator 9. Well No. Michigan-Wisconsin Pipe Line Company 13 - 310. Field and Pool, or Wildcat 717 17th Street, Ste 2500, Denver, Colorado 4. Location of Well (Report location clearly and in accordance with any State requirements.*) Wildcat 11. Sec., T., R., M., or Blk. and Survey or Area & 1400' **AND.** NW4 SW4 At proposed pro Section 3, T2N, R5E Nugget 12. County or Parrish 13. State 14. Distance in miles and direction from nearest town or post office* 3/4 mile NE of Coalville, Utah Summit Utah 15. Distance from proposed*
location to nearest
property or lease line, ft.
(Also to nearest drig. line, if any) 17. No. of acres assigned to this well 16. No. of acres in lease 640.00 513' 810.37 18. Distance from proposed location* to nearest well, drilling, completed, or applied for, on this lease, ft. 19. Proposed depth 20. Rotary or cable tools 20,000 Rotary 22, Approx, date work will start* 21. Elevations (Show whether DF, RT, GR, etc.) GL 5981' 2/28/79 23 PROPOSED CASING AND CEMENTING PROGRAM Quantity of Cement Size of Hole Size of Casing Weight per Foot Setting Depth 5" 18# 20,000 + 500 sx 6 - 1/2

Operator proposes to clean out and cement squeeze existing perforations. Clean out open hole, plug back based on directional surveys and deepen to 20,000'.


Present Well Status: Temporarily abandoned.

operator charge re-entry

APPROVED BY THE DIVISION OF

IN ABOVE SPACE DESCRIBE PROPOSED PROGRAM: If proposal is to deepen or plug back, give data on present productive zone and proposed new productive zone. If proposal is to drill or deepen directionally, give pertinent data on subsurface locations and measured and true vertical depths. Give blowout preventer program, if any,

Date. 1/12/79 Senior Drilling Engineer (This space for Federal or State office use) Permit No... Approved by..... Title Date..... Conditions of approval, if any:

PETROLEUM SUPERVISION AND MANAGEMENT, INC.

1660 LINCOLN STREET DENVER, COLORADO 80264 303-861-9050 P.O. BOX 1690 MILLS. WYOMING 82644 307-266-1276

COLORADO ENERGETICS-FUELCO-IMPEL CORP.
NO.13-3 WEBER COAL COMPANY
1400' FSL & 500' FWL (NWSW) SEC.3-T2N-R5E
SUMMIT COUNTY
UTAH

CONFIDENTIAL

DATA SHEET

OPERATOR

Colorado Energetics, Inc.

ADDRESS:

Suite 1010, 333 West Hampden Avenue

Englewood, Colorado 80110

OTHER WORKING INTEREST

OWNERS:

Fuelco

Impel Corporation

Box 840, 550 15th Street

475 17th Street

Denver, Colorado 80201

Denver, Colorado 80202

WELL NAME:

No. 13-3 Weber Coal Company

LOCATION:

1400' FSL & 500' FWL (NW SW) Section 3-T2N-R5E

COUNTY:

Summit

STATE:

Utah

AREA:

Coalville Wildcat

ELEVATION:

5981' Ground; 6002' KB

GEOLOGIST:

R. L. Wagner

COMMENCED:

10:30 a.m. June 26, 1976

CEASED DRILLING:

9:00 p.m. June 15, 1977

CONTRACTOR:

Viersen-Cochran Drilling Company

TOOLPUSHER:

Dennis Jamieson

DRILLERS:

Albert C. Winn; Pete Santiago; J.W. Hinnant

EQUIPMENT:

Rig No. 13

TYPE DRAWWORKS:

National N-80

DRAWWORKS POWER:

Three CAT D-379 Motors

DERRICK:

Lee C. Moore 132'

PUMP:

Emsco F800 (9") Compounded

PUMP:

Gardner Denver GXR (18") Compounded

DRILL PIPE:

After intermediate 4 1/2" FH & 4 1/2" XH

DRILL COLLARS:

After intermediate 4 1/2" IF

DRILLING FLUID:

Basin Mud Service - Ben Bearden - Engineer

Larry Clark - Engineer

DATA SHEET PAGE 2 ENERGETICS, INC. WEBER COAL CO.

SURFACE CASING:

13 3/8" at 3039' KB

INTERMEDIATE CASING:

9 5/8" at 10,663' KB; 7 7/8" liner to 15,675' KB

DRILLING TIME:

Geolograph Drill - Sentry

One foot times

HOLE SIZE:

17 1/2" 0' - 3039'; 12 1/4" 3039'- 10,665'; 8 1/2" 10,665 - 15,841'; 6 1/2" 15,841' - 17,325'

SAMPLES:

30 foot intervals surface to 3040' 10 foot intervals 3040' to 17,325'

MUD LOGGING UNIT:

Tooke Engineering Company

ENGINEER:

Steve Bergman

CORING:

Core No. 1 11,606' - 11, 630' Recovered 24'

Christensen Diamond Products

CORE ANALYSIS:

Core Laboratories

DRILL STEM TESTING:

DST No. 1 10,636' - 10,905' DST No. 2 11,480' - 11,521' DST No. 3 11,475' - 11,630' Johnston

Johnston

Johnston (Misrun) Johnston (Misrun)

DST No. 4 11,498' - 11,630' DST No. 5 10,631' - 11,630' Johnston

ELECTRIC LOGGING:

Temperature Survey - Dresser Atlas

Schlumberger - Dual Induction Laterolog

BHC Sonic (Gamma Ray) Caliper

Continuous Dipmeter

Compensated Neutron Density

TOTAL DEPTH:

17,325' Driller; 17,289' Logger

STATUS:

Will set plugs and test various zones through

perforations.

CHRONOLOGICAL HISTORY

DATE		DEPTH AND OPERAT	ION	REMARKS
1976				
June	21 .	RURT		
	22	RURT		
	23	RURT		
	24	RURT		
	25	RURT		
	26	RURT		
	27	Drilling 447'	(347')	Spud 10:30 a.m. 6/26/ - Drilling 12 1/4" hole.
	28	Drilling 721!	(274')	Drilling with 10-15,000 #wt. 80 RPM, 1150 # pump. Mud weight 8.9, Viscosity 35. Lost 65 barrels mud at 690'.
	29	Drilling 995'	(274')	Drilling with 20-25,000 # wt., 90 RPM, 600 # pump.
	30	Drilling 1224'	(229')	Mud weight 9.1, Viscosity 36.
July	1	Drilling 1480'	(256')	Drilling with 25-30,000 # wt., 70 RPM, 700 # pump. Mud weight 9.2, Viscosity 35.
	2	Trip 1711'	(231')	
	3	Drilling 1916'	(205')	Drilling with 30-35,000 # wt., 60-65 RPM, 1100 # pump. Mud weight 9.4, Viscosity 36.
	4	Drilling 2115'	(199')	
	5	Drilling 2293'	(178')	Drilling with 40-45,000 # wt., 60 RPM, 1100 # pump. Mud weight 9.0. Viscosity 36.
	6	Drilling 2432'	(139')	Mud weight 9.1, Viscosity 38. Lost 100 barrels mud 2295-2315'; Lost 70 barrels mud 2345-2387'.
	7	Drilling 2535'	(103')	Drilling with 15-20,000 # wt., 60 RPM, 1150 # pump. Mud weight 9.1, Viscosity 36. Lost 50 barrels mud 2510-2515'.

CHRONOLOGICAL HISTORY
PAGE 2
ENERGETICS, INC.
WEBER COAL CO.

July	8	Drilling 2672' (137')	Mud weight 9.2, Viscosity 36. Lost 50 barrels mud 2585-2595'.
	9	Drilling 2823' (151')	
	10	Drilling 3000' (177')	Mud weight 9.0, Viscosity 37, PV 11, YP 9, GS 1-4, FC 2/32, pH 9.0, Waterloss 15.0.
	11	Reaming 313'	Opening hole to 17 1/2".
•	12	Reaming 827'	
•	13	Reaming 1069'	
•	14	Reaming 1499'	
	15	Reaming 1930'	
	16	Reaming 2144'	
•	17	Reaming 2412'	
•	18	Reaming 2532'	
	19	Reaming 2680'	
:	20	Reaming 2835'	
	21	Reaming 2922'	
;	22	Reaming 3039'	SLM - No correction. Preparing to run 13 3/8" casing.
,	23	PTD 3039'	Ran 76 joints 13 3/8", K-55, 61 # casing totaling 3054'. Cemented at 3039' KB with 1415 sx Class G, 8% gel, 1% CaCl ₂ , 10 # Cal Seal per sack followed by 1200 sx Class G, 1% CaCl ₂ . Plug down 10:10 p.m. 7/22
	24	PTD 3039'	WOC. Ran temperature survey. Cemented through 450' one inch pipe with 600 sx Class G, 2% CaCl ₂ .
	25	PTD 3039'	Nipple up.
	26	Drilling 3048' (9')	Drilling with 10-12,000 # wt., 60 RPM, 1550 # pump. Mud weight 8.8, Viscosity 54, Waterloss 28, FC 2/32 pH 9.0. Tested blind rams and manifold to 1500 psi. Top cement

CHRONOLOGICAL HISTORY PAGE 3 ENERGETICS, INC. WEBER COAL CO.

July 26	(con't)	at 2982'.
27	Drilling 3130' (82')	Drilling with 2-8,000 # wt., 70 RPM, 1800 # pump. Mud weight 8.6, Viscosity 32.
28	Drilling 3199' (69')	Changed out bottom hole assembly.
29	Drilling 3275' (76')	Drilling with 2-4,000 # wt., 70 RPM, 1400 # pump. Mud weight 8.8, Viscosity 34.
30	Drilling 3314' (39')	Drilling with 8-10,000 # wt., 70 RPM, 1400 # pump. Mud weight 8.8, Viscosity 35.
31	Drilling 3390' (76')	Drilling with 10-11,000 # wt., 70 RPM, 1500 # pump. Mud weight 8.7, Viscosity 32.
August 1	Drilling 3444' (54')	Drilling with 4-6,000 # wt., 70 RPM, 1500 # pump.
2	Drilling 3478' (34')	Drilling with 6-8,000 # wt., 70 RPM, 1500 # pump.
3	Drilling 3550' (72')	Drilling with 12-15,000 # wt., 65 RPM, 1500 # pump.
4	Drilling 3647' (97')	Drilling with 10-25,000 # wt., 66-70 RPM, 1500 # pump.
5	Drilling 3688' (41')	Drilling with packed hole assembly.
6	Drilling 3823' (135')	Drilling with 25,000 # wt., 60 RPM, 1500 # pump.
7	Drilling 3919' (96')	
8	Drilling 4064' (145')	Drilling with 15-30,000 # wt., 75-90 RPM, 1350 # pump. Mud weight 8.9, Viscosity 32.
9	Drilling 4189' (125')	Drilling with 30-35,000 # wt., 85- 90 RPM, 1350 # pump. Mud weight 9.0, Viscosity 35.
10	Drilling 4309' (120')	
11	PTD 4327' (18')	Laying down fish. Lost 40,000 # while drilling - went in with overshot and recovered fish.

CHRONOLOGICAL HISTORY
PAGE 4
ENERGETICS, INC.
WEBER COAL CO.

August 12	Drilling 4421'	(94')	Drilling with 25-30,000 # wt., 80- 90 RPM, 1550 # pump. Mud weight 9.1, Viscosity 32.
13	Drilling 4560'	(139')	Drilling with 38,000 # wt., 90 RPM, 1550 # pump. Mud weight 9.1, Viscosity 33.
14	Drilling 4669'	(109')	Drilling with 25,000 # wt., 90 RPM, 1450 # pump.
15	Drilling 4766'	(97')	
16	Drilling 4858'	(92')	Drilling with 25,000 # wt., 90 RPM, 1600 # pump. Mud weight 9.0, Viscosity 32.
17	Trip 4999' (14	1')	
18	Drilling 5039'	(40')	Drilling with 35-40,000 # wt., 70 RPM, 1600 # pump. Twisted off at jars - went in with overshot and recovered fish.
19	Drilling 5125'	(86')	Mud weight 9.9, Viscosity 34.
20	Drilling 5268'	(143')	Drilling with 35,000 # wt., 65 RPM, 1550 # pump. Mud weight 8.9, Viscosity 32. Preparing to trip for possible hole in pipe.
21	Drilling 5311'	(43")	Layed down two washed out drill collars.
22	Drilling 5406'	(95')	Drilling with 38,000 # wt., 70 RPM, 1650 # pump. Mud weight 8.8, Viscosity 32.
23	Drilling 5494'	(88')	Drilling with 30-35,000 # wt., 75 RPM, 1650 # pump. Mud weight 8.9, Viscosity 33.
24	Drilling 5527'	(33')	
25	Drilling 5617'	(90')	Drilling with 40,000 # wt., 70 RPM, 1650 # pump. Mud weight 8.9, Viscosity 34.
26	Drilling 5736'	(119')	

CHRONOLOGICAL HISTORY PAGE 5 ENERGETICS, INC. WEBER COAL CO.

August	27	Drilling	5837'	(101')	Mud weight 8.8, Viscosity 33.
	28	Drilling	5951'	(114')	Drilling with 25-35,000 # wt., 70 RPM, 1650 # pump. Mud weight 9.0, Viscosity 34.
	29	Drilling	6000'	(49')	Mud weight 8.9, Viscosity 34. 30' fill after trip.
	30	Drilling	6114'	(114')	
	31	Drilling (6209'	(95')	Drilling with 30-38,000 # wt., 70 RPM, 1750 # pump. Mud weight 8.8, Viscosity 33.
Sept.	1	Drilling (6298'	(89')	Drilling with 35-38,000 # wt., 70 RPM, 1750 # pump.
	2	Drilling (6340'	(42')	Mud weight 8.9, Viscosity 38.
	3	Drilling (6423'	(83')	Drilling with 35-38,000 # wt., 60-70 RPM, 1750 # pump. Mud weight 8.9, Viscosity 34.
	4	Drilling (6503'	(80')	Drilling with 38-40,000 # wt., 70 RPM, 1700 # pump. Mud weight 9.0, Viscosity 35.
	5	Trip 6575	' (72')	
	6	Drilling (6610'		Drilling with 30-45,000 # wt., 55-70 RPM, 1700 # pump. Mud weight 8.9, Viscosity 33.
	7	Drilling 6	6700'	(90')	Drilling with 30,000 # wt., 60 RPM, 1700 # pump. Mud weight 8.9, Viscosity 34.
	8	Drilling 6	5 7 83'	(83')	
	9	Drilling 6	6854'		Drilling with 25-35,000 # wt., 60-70 RPM, 1500 # pump. Mud weight 8.9, Viscosity 35.
1	0	Drilling 6	5933'		Drilling with 35-40,000 # wt., 70 RPM, 1500 # pump. Mud weight 8.9, Viscosity 34.
7	1	Drilling 7	7031'	(98')	Mud weight 8.9, Viscosity 34.
1	2	Drilling 7	7097'	(66')	

CHRONOLOGICAL HISTORY
PAGE 6
ENERGETICS, INC.
WEBER COAL CO.

Sept.	13	Drilling 7213' (116')	Drilling with 30-35,000 # wt., 60-65 RPM, 1500 # pump. Mud weight 9.0, Viscosity 36.
	14	Drilling 7316' (103')	Drilling with 35-40,000 # wt., 65-70 RPM, 1500 # pump. Mud weight 9.0, Viscosity 36.
	15	Trip 7398' (82')	
	16	Drilling 7498' (100')	Drilling with 3-35,000 # wt., 65 RPM, 1500 # pump. Mud weight 9.1, Viscosity 36.
	17	Drilling 7596' (98')	
	18	Drilling 7707' (111')	Drilling with 30,000 # wt., 70 RPM, 1500 # pump. Mud weight 8.9, Viscosity 35.
	19	Drilling 7806' (99')	Mud weight 8.9, Viscosity 36.
	20	Trip 7876' (70')	
	21	Drilling 7892' (16')	Drilling with 30,000 # wt., 60-65 RPM, 750 # pump. Magnafluxed collars and changed over mud system to a salt-saturated Polymer.
	22	Drilling 7964' (72')	Mud weight 9.1, Viscosity 33, PV 7, YP 4, GS % FC 1/32, Waterloss 14, pH 9.0, Chlorides 75,000 ppm.
	23	Drilling 8012' (48')	Drilling with 25,000 # wt., 70 RPM, 1400 # pump. Mud weight 9.6, Viscosity 42, Waterloss 14, FC 1/32. pH 9.5, Chlorides 240,000 ppm.
	24	Drilling 8097' (85')	Drilling with 25,000 # wt., 70 RPM, 1500 # pump. Mud weight 9.7, Viscosity 36, Waterloss 10, FC 1/32, pH 9.5, Salt 300,000 ppm.
	25	Drilling 8168' (71')	
	26	Drilling 8196' (28')	Drilling with 10,000 # wt., 70 RPM, 1500 # pump. Lost 30 barrels mud. Mud weight 9.5, Viscosity 32, Waterloss 10, FC 2/32, pH 11.5, Salt 264,000 ppm.

CHRONOLOGICAL HISTORY
PAGE 7
ENERGETICS, INC.
WEBER COAL CO.

Sept.	27	Drilling 8218'	(22')	Drilling with 20,000 # wt., 70 RPM, 1650 # pump.
	28	Drilling 8289'	(71')	Drilling with 20-30,000 # wt., 70 RPM, 13-1700 # pump. Mud weight 9.5, Viscosity 35, Waterloss 8.0, FC 2/32, pH 11, Salt 247,000 ppm. 10% LCM. Lost approximately 250 barrels mud 8257-8268'.
	29	Drilling 8348'	(59')	Mud weight 9.7, Viscosity 33, Water-loss 7.8, FC 2/32, pH 11.5, Salt 272,500 ppm. Trip for hole in pipe.
	30	Drilling 8412'	(64')	Drilling with 25-30,000 # wt., 70 RPM, 1300 # pump. Mud weight 9.7, Viscosity 32, Waterloss 7.6, FC 2/32, pH 11.5, Salt 265,000 ppm. Trip for hole in pipe.
Oct.	1	Drilling 8476'	(64')	Mud weight 9.5, Viscosity 32, Water- loss 8.0, FC 2/32, pH 12, Salt 231,000 ppm.
	2	Drilling 8519'	(43')	Drilling with 20,000 # wt., 70 RPM, 1400 # pump. Mud weight 9.5, Viscosity 37, Waterloss 6.4, FC 2/32, pH 12.0, Salt 206,250 ppm.
	3	Drilling 8593'	(74')	Mud weight 9.5, Viscosity 32, Waterloss 6.2, FC 2/32, pH 12.0, Salt 184,800 ppm.
	4	Drilling 8680'	(87')	Drilling with 25-27,000 # wt., 70 RPM, 1375 # pump. Mud weight 9.4, Viscosity 34, Water loss 6.0, FC 2/32, pH 11.5, Salt 175,000 ppm.
	5	Trip 8716' (36'	')	Check collars.
	6	Drilling 8793'	(77')	Drilling with 15,000 # wt., 70 RPM, 1400 # pump. Mud weight 9.5, Viscosity 32, Waterloss 9.2, FC 2/32, pH 11.5, Salt 182,000 ppm.
	7	Drilling 8889'	(96')	•
	8	Drilling 8949'	(60')	Drilling with 25,000 #wt., 70 RPM, 1200 # pump. Mud weight 9.4, Viscosity 32, Waterloss 10, FC 2/32, pH 12, Salt 170,000 ppm.

CHRONOLOGICAL HISTORY
PAGE 8
ENERGETICS, INC.
WEBER COAL CO.

Oct.	9	PTD 8955' (6')	Laying down drill pipe for Tubo- scope install H ₂ S detector.
1	0	PTD 8955' (0')	Going in hole-breaking circulation. Added Ironite Sponge to mud-H ₂ S detector ineffective.
1	1	Drilling 9043' (88')	Drilling with 25,000 # wt., 65-70 RPM, 1200-1400 # pump. Mud weight 9.4, Viscosity 32, Waterloss 12, FC 2/32, pH 11, Salt 170,000 ppm.
1	2	Drilling 9200' (157')	Drilling with 10-28,000 # wt., 70 RPM, 1400 # pump. Mud weight 9.7, Viscosity 35, Waterloss 11.6, FC 2/32, pH 11.0, Salt 183,500 ppm.
1	3	PTD 9308' (108')	Pulled 5 stands off bottom. Mixing mud and LCM. Mud weight 10.0, Viscosity 33, Waterloss 12, FC 2/32 pH 10.0, Salt 264,000 ppm.
1	4	Drilling 9368' (60')	Drilling with 5-10,000 # wt., 70 RPM, 1350 # pump. Mud weight 9.5, Viscosity 35, Waterloss 8.0, FC 2/32, pH 12, Salt 181,500 ppm. LCM 15%.
1	5	Drilling 9421' (53')	Drilling with 10-12,000 # wt., 70 RPM, 1500 # pump. Mud weight 9.9, Viscosity 35, Waterloss 8, FC 2/32, pH 11.5, Salt 264,000 ppm.
ı	6	Drilling 9471 (50')	Drilling with 30-32,000 # wt., 70 RPM, 1450 # pump. Mud weight 10.0, Viscosity 34, Waterloss 8.0, FC 2/32, pH 11, Salt 280,500 ppm.
	7	PTD 9473' (2')	Stuck drill pipe-spotted oil and pipe lax-jarred with no results. Spotted 60 barrels fresh water.
1	8	PTD 9473' (0')	Displaced hole with water. Ran free point. Tried to back off and lost shot tool in hole. Trip out of hole-found twist off in drill pipe.

CHRONOLOGICAL HISTORY PAGE 9 ENERGETICS, INC. WEBER COAL CO.

Oct.	19	PTD 9473'	(0')	Running in string shot to back off.
	20	PTD 9473'	(0')	Running free point.
	21	PTD 9473'	(0')	Preparing to perforate 9" collars.
	22	PTD 9473'	(0')	Preparing to wash over fish.
	23	PTD 9473'	(0')	Washing over fish at 9073'.
	24	PTD 9473'	(0')	Trip out of hole-washed over fish to 9127'.
	25	PTD 9473'	(0')	Running free point-Could not recover fish.
	26	PTD 9473'	(0')	Trip out with wash pipe-Washed over to 9130'.
	27	PTD 9473'	(0')	Washing over fish.
	28	PTD 9473'	(0')	Pulling out of hole with jars.
	29	PTD 9473'	(0')	Trip in with wash pipe.
	30	PTD 9473'	(0')	Pulling out of hole with wash pipe. Washed over fish to 9096'.
	31	PTD 9473'	(0')	Washing over fish at 9138'.
Nov.	1	PTD 9473'	(0')	Pulling out of hole with partial fish.
	2	PTD 9473'	(0')	Washing over drill collars at 9175'.
	3	PTD 9473'	(0')	Preparing to back off at 9180'.
	4	PTD 9473'	(0')	Preparing to run free point.
	5	PTD 9473'	(0')	Washing over fish at 9208'.
	6	PTD 9473'	(0')	Trip in to screw in to fish.
	7	PTD 9473'	(0')	Pulling out of hole with wireline.
	8	PTD 9473'	(0')	Running logs by Schlumberger. Ran BHC Sonic/Gamma Ray/ Cal. & Dipmeter. Now running DIL.

CHRONOLOGICAL HISTORY PAGE 10 ENERGETICS, INC. WEBER COAL CO.

Nov. 9	PTD 9473' (0')	Wait on cement. Spot plug with 620 sx Type "G", 1/4# Flocele 1 sack sand added at hopper. Top cement 8550'.
10	PBTD 8550' (0')	Wait on cement.
11	PBTD 8550' (0')	Check drill collars and wait on Dyna Drill.
12	PTD 8767' (217')	Drilled cement from 8550-8767'.
13	PTD 8810' (43')	Drilled cement to 8810'. Layed down Dyna Drill. Preparing to set plug.
14	PTD 8810' (0')	Cemented with 100 sacks Type "G" with 200 # walnut shells added.
15	PTD 8810' (0')	Wait on cement. Drilled cement from 8724-8785'. Set plug at 8785 with 300 sacks Type "G" with 1% CFR 2, 1% CaCl2, 1/4 # Flocele 1 sack, 20# 100 mesh sand, 1 sack, 18% salt.
16	PTD 8484' (0')	Top cement 8452'.
17	Drilling 8508' (24')	Drilling with bent sub. Dyna Drill and Diamond bit.
18	Drilling 8518' (10')	Drilling with 20,000 # wt., 70 RPM, 1750 # pump. Mud weight 9.7, Viscosity 43, Waterloss 5.4, FC 2/32 pH 11.4, C1 225,000 ppm. Layed down Dyna Drill.
19	Drilling 8551' (33')	
20	Trip 8554' (3')	Pick up Dyna Drill
21		
	Drilling 8593' (39')	
22	Drilling 8593' (39') Drilling 8625' (32')	Drilling with 14-16,000 # wt., and Dyna Drill.

CHRONOLOCIAL HISTORY PAGE 11 ENERGETICS, INC. WEBER COAL CO.

Nov. 25	Trip 8659' (12')	
26	Trip 8688' (29')	
27	Drilling 8700' (12')	Drilling with 15-18,000 # wt., 55 RPM, 1600 # pump.
28	Drilling 8759' (59')	Mud weight 9.8, Viscosity 44, Water- loss 5.2, FC 2/32, pH 11.5, Salt 210,000 ppm.
29	Drilling 8813' (54')	
30	Drilling 8860' (47')	Drilling with 10,000 # wt., 70 RPM, 1700 # pump.
Dec. 1	Drilling 8885' (25')	·
2	Drilling 8916' (31')	
3	Drilling 8940' (24')	Drilling with 10-15,000 # wt., 70 RPM, 1600 # pump. Trip for hole in 16.60 # pipe.
4	Drilling 8971' (31')	
5	Drilling 9012' (41')	
6	Drilling 9038' (26')	Mud weight 9.9, Viscosity 44, Water- loss 4.8, FC 2/32, pH 11.5, Salt 273,000 ppm.
7	Drilling 9085' (47')	
8	Drilling 9152' (67')	Drilling with 8-10,000 # wt., 75-80 RPM, 1600 # pump.
9	Drilling 9214' (62')	
10	Drilling 9313' (99')	Drilling with 10-15,000 # wt., 70 RPM, 1300 # pump. Mud weight 10.3, Viscosity 46, Waterloss 4.6, FC 2/32, pH 11.5, Salt 289,000 ppm.
11	Drilling 9398' (85')	
12	Drilling 9462' (64')	Salt 300,000 ppm.
13	Drilling 9522' (60')	Drilling with 22-25,000 # wt., 70 RPM, 1350 # pump. Salt 310,000 ppm.

CHRONOLOGICAL HISTORY PAGE 12 ENERGETICS, INC. WEBER COAL CO.

Dec. 14	Drilling 9542' (20')	
15	Drilling 9600' (58')	Drilling with 20-30,000 # wt., 75 RPM, 1390 # pump.
16	Drilling 9628' (28')	
17	Drilling 9635' (7')	Wash 360' to bottom after trip. Mud weight 10.4, Viscosity 42, Waterloss 5.0, FC 2/32, pH 11,5, Salt 297,000 ppm, LCM 7%.
18	Trip 9653' (18')	
19	Drilling 9686' (33')	Drilling with 40,000 # wt., 70 RPM, 1400 # pump. Mud weight 10.7, Viscosity 43, Waterloss 4.0, FC 2/32, pH 11.5, Salt 297,000 ppm, LCM 6%.
20	Drilling 9744' (58')	Reaming tite hole.
21	Drilling 9821' (77')	Drilling with 40-45,000 # wt., 70 RPM, 1600 # pump.
22	Drilling 9854' (33')	Mud weight 10.9, Viscosity 44, Water loss 4.8, FC 2/32, pH 11.5. Reamed tite hole after trip from 9420' to 9842'.
23	Drilling 9933' (79')	Drilling with 30-38,000 # wt., 70-75 RPM, 1250 # pump. Mud weight 11.0, Viscosity 45, Waterloss 5.0, FC 1/32, pH 10.5.
24	Drilling 9987' (39')	Made short trip and reamed hole.
25	Drilling 10,026' (39')	Merry Christmas
26	PTD 10,080' (54')	Making short trip, tite hole 9344' to 9530'.
27	Drilling 10,117' (37')	Drilling with 30-40,000 # wt., 75 RPM, 1400 # pump. Mud weight 11.4, Viscosity 46, Waterloss 4.7, FC 2/32, pH 11.5. Reamed 9100'-9467' and 10,020'-10,080'. Short trip 10,111-0K.

CHRONOLOGICAL HISTORY PAGE 13 ENERGETICS, INC. WEBER COAL CO.

Dec.	28	Drilling 10,150' (33')	
	29	Drilling 10,189' (39')	Drilling with 38-40,000 # wt., 75 RPM, 1600 # pump.
	30	Trip 10,203' (14')	
	31	Drilling 10,243' (40')	Drilling with 35-40,000 # wt., 70-75 RPM, 1600 # pump. Mud weight 11.5, Viscosity 44, Water- loss 4.9, FC 2/32, pH 11.5.
1977			
Jan.	1	PTD 10,282' (39')	Waiting on fishing tools. Drill pipe parted on short trip-left BHA (608.66') and 14 stands and double in hole.
	2	PTD 10,282 (0')	Inspecting drill collars. Hoisted fish out of hole. Left 3 cones, shank and bearings on bottom.
	3	PTD 10,282' (0')	Mixing mud and LCM. Went in with bit to condition hole-tite at 9104'-lost returns. Pulled up to 8174'.
	4	PTD 10,282' (0')	Reaming bridges to bottom.
	5	PTD 10,282' (0')	Trip out to pick up junk basket.
	6	PTD 10,282' (0')	No recovery on basket. Preparing to go in with magnet.
	7	PTD 10,282' (0')	Recovered bearings with magnet, preparing to go in hole with junk mill.
	8	PTD 10,282' (0')	Milling on junk.
	9	PTD 10,282' (0')	Going in hole with magnet.
	10	PTD 10,282' (0')	Going in hole with magnet.
	11	Drilling 10,310' (28')	Drilling with 45,000 # wt., 55 RPM, 1550 # pump. SLM-8.0' correction.

CHRONOLOGICAL HISTORY
PAGE 14
ENERGETICS, INC.
WEBER COAL CO.

Jan.	12	Drilling 10,341' (31')	Mud weight 11.5, Viscosity 48, Waterloss 5.0, FC 2/32, pH 12.0.
	13	Drilling 10,365' (24')	Making short trip.
	14	Drilling 10,434' (69')	Drilling with 35-40,000 # wt., 70 RPM, 1500 # pump.
	15	Trip 10,474' (40')	
	16	Drilling 10,532' (58')	Drilling with 40-50,000 # wt., 55 RPM, 1500 # pump. Mud weight 11.5+, Viscosity 41, Waterloss 5.0, FC 2/32, pH 12.0.
	17	Trip 10,576' (44')	
	18	Drilling 10,636' (60')	Drilling with 35-40,000 # wt., 55 RPM, 1500 # pump. Mud weight 11.5+, Viscosity 48, Waterloss 5.0, FC 2/32, pH 11.5, Ca +160.
	19	PDT 10,662' (26')	Hoisting to log.
	20	PTD 10,665' (SLM)	Conditioning hole to run casing. Ran Dual Laterolog, BHC Sonic. CDM. Logger Total Depth 10,665'.
	21	PTD 10,665' (0')	Running 9 5/8" casing.
	22	PTD 10,665' (0')	Waiting on cement. Ran temperature log. Top cement at 8270'. Ran 246 joints 9 5/8" and 9 7/8" casing totaling 10,674.87'. Cemented at 10,663' KB with 600 sacks 50-50 Pozmix, 2% Gel, 30% SSA-1, Salt saturated followed by 300 sacks Class "G", 30% SSA-1, 18% salt, 0.3% HR5, 0.75% CFR2. Plug down 8:15 a.m. 1-22-77.
	23	PTD 10,665' (0')	Nipple up.
	24	PTD 10,665' (0')	Nipple up and test B.O.P.
	25	PTD 10,665' (0')	Picking up 4 1/2" drill pipe.
	26	Drilling 10,719' (54')	Drilling with 40-45,000 # wt., 50 RPM, 1100 # pump. Top cement 10,578' - On bottom drilling at 6:30 p.m. 1-25-77.

CHRONOLOGICAL HISTORY
PAGE 15
ENERGETICS, INC.
WEBER COAL CO.

Jan. 27	Drilling 10,782' (63')	Mud weight 10.7, Viscosity 40, Waterloss 5.8, FC 2/32, pH 11.5.
28	Drilling 10,885' (103')	Drilling with 45,000 # wt., 45 RPM 1400 # pump. Checked log at 10,810'. Carbide gas in 1 hour 25 minutes.
29	PTD 10,905' (20')	Hoisting Drill Stem Test tools, went in with tools and set slips on hook inadvertenly. Backed off then screwed back in. Wait on new safety joint and seal.
30	PTD 10,905' (0')	Hoisting Drill Stem Test No. 1 10,636' - 10,905'.
31	Drilling 10,954' (49')	Drilling with 45,000 # wt., 45 RPM, 1500 # pump. Mud weight 9.9, Viscosity 38, Waterloss 6.0, FC 2/32, pH 12.0.
Feb. 1	Trip 11,007' (53')	
2	Drilling 11,101' (94')	Drilling with 35,000 # wt., 45 RPM, 1500 # pump. Mud weight 9.7, Viscosity 38, Waterloss 6.4.
3	Drilling 11,194' (93')	Drilling with 42,000 # wt., 45-50 RPM, 1500 # pump. Mud weight 9.7, Viscosity 38.
4	PTD 11,206' (12')	Preparing to hoist and lay down drill pipe.
5	PTD 11,206' (0')	Inspecting drill pipe.
6	PTD 11,206' (0')	Inspecting drill pipe.
7	Drilling 11,276' (70')	Drilling with 45,000 # wt., 45 RPM, 1300 # pump. Mud weight 9.6, Viscosity 41, Waterloss 7.0, FC 2/32, pH 11.5.
8	Drilling 11,387' (111')	
9	Trip 11,435' (48')	
10	PTD 11,521' (86')	Going in hole with DST No. 2 11,480' to 11,521'.

CHRONOLOGICAL HISTORY
PAGE 16
ENERGETICS, INC.
WEBER COAL CO.

Feb. 11	Drilling 11,571' (50')	Drilling with 40,000 # wt., 45 RPM, 1400 # pump. Mud weight 9.2, Viscosity 42, Waterloss 7.2, FC 2/32, pH 11.5.
12	PTD 11,628' (57')	Working on pump. Cutting Core No. 1, 11,606' - 11,630'.
13	PTD 11,630' (2')	Trip out to pick up test tools, reamed core hole.
14	PTD 11,630' (0')	Hoisting Drill Stem Test No. 4 11,498' - 11,630'. Misrun. Ran Drill Stem Test No. 3, 11-475'- 11,630' - Misrun.
15	PTD 11,630' (0')	Running Drill Stem Test No.5, 10,631' - 11,630'.
16	Drilling 11,678' (48')	Drilling with 45,000 # wt., 45 RPM, 1500 # pump. Mud weight 9.2, Viscosity 38, Waterloss 7.6, FC 2/32, pH 11.5.
17	Drilling 11,903' (225')	Drilling with 42-45,000 # wt., 45 RPM, 1500 # pump. Lost approximately 150 barrels mud 11,860'-11,890'.
18	Drilling 12,022' (119')	Drilling with 42-45,000 # wt., 45 RPM, 1400 # pump. Mud weight 9.0, Viscosity 40, Waterloss 8.0, FC 2/32, pH 11.5.
19	Trip 12,176' (154')	Mud weight 8.9, Viscosity 36, Waterloss 8.0, FC 2/32, pH 11.5.
20	PTD 12,283' (107')	Working on pump.
21	Trip 12,301' (18')	
22	Drilling 12,356' (55')	Drilling with 48,000 # wt., 45 RPM, 1350 # pump.
23	Drilling 12,416' (60')	Drilling with 50,000 # wt., 45 RPM, 1350 # pump. Mud weight 8.9, Viscosity 38, Waterloss 8.0, FC 2/32, pH 11.5.

CHRONOLOGICAL HISTORY PAGE 17 ENERGETICS, INC. WEBER COAL CO.

Feb. 24	Drilling 12,487' (71')	
25	Drilling 12,522' (35')	Drilling with 40,000 # wt., 45 RPM, 1350 # pump. Mud weight 8.9, Viscosity 38.
26	Trip 12,594' (72')	
27	Drilling 12,624' (30')	Drilling with 45-50,000 # wt., 45 RPM, 1000 # pump. Mud weight 8.9, Viscosity 42, Waterloss 8.0, FC 2/32, pH 11.5.
28	Trip 12,642' (18')	
March 1	Drilling 12,704' (62')	Drilling with 40-45,000 # wt., 45 RPM, 1050 # pump. Mud weight 8.9, Viscosity 39, Waterloss 8.0, FC 2/32, pH 11.5.
2	PTD 12,733' (19')	Pulled 26 stands to work on draw-works.
3	Drilling 12,735' (12')	Drilling with 40,000 # wt., 50 RPM, 1050 # pump. Mud weight 8.9, Viscosity 39.
4	Trip 12,782' (47')	
5	Drilling 12,833' (51')	Drilling with 40-44,000 # wt., 45 RPM, 1350 # pump.
6	Drilling 12,898' (65')	
7	Drilling 12,950' (52')	Drilling with 42-48,000 # wt., 50 RPM, 1350 # pump. Mud weight 8.9, Viscosity 35, Waterloss 7.8, FC 2/32, pH 11.5.
8	Drilling 13,023' (73')	
9	Drilling 13,058' (35')	Drilling with 20-45,000 # wt., 45 RPM, 1150 # pump. Mud weight 8.9, Viscosity 35, Waterloss 7.8, FC 2/32, pH 11.5.
10	Drilling 13,069' (11')	
11	Trip 13,116' (47')	

CHRONOLOGICAL HISTORY
PAGE 18
ENERGETICS, INC.
WEBER COAL CO.

March	12	Trip 13,149' (33')	Lost cone off Bit No. 21.
	13	PTD 13,157' (8')		Fishing for cone with magnet.
	14	Drilling 13,178'	(21')	Drilling with 35-45,00 # wt., 45 RPM, 1050 # pump. Mud weight 8.8, Viscosity 36, Waterloss 7.4, FC 2/32, pH 11.5.
	15	Drilling 13,260'	(82')	
	16	Drilling 13,283'	(23')	Mud weight 8.9, Viscosity 36, Waterloss 6.0, FC 2/32, pH 11.5.
	17	Trip 13,323' (40')	
	18	Drilling 13,346'	(23')	Drilling with 30-40,000 # wt., 40 RPM, 1450 # pump. Mud weight 8.9, Viscosity 35, Waterloss 6.8, FC 2/32, pH 12.0.
	19	PTD 13,353' (7')		Hoisting overshot. Drill pipe parted - left BHA (747.92'), 18 stands and 2 singles in hole.
	20	Drilling 13,360'	(7')	Drilling with 24-40,000 # wt., 40 RPM, 1375 # pump.
	21	Drilling 13,380'	(26')	Trip for hole in pipe.
	22	Drilling 13,480'	(94')	Drilling with 38-40,000 # wt., 50 RPM, 1425 # pump. Mud weight 8.9, Viscosity 35, Waterloss 7.6, FC 2/32, pH 11.5.
	23	Drilling 13,566'	(861)	
	24	Drilling 13,652'	(86')	Mud weight 9.0, Viscosity 38, Water- loss 6.8, FC 2/32, pH 11.5.
	25	Drilling 13,705'	(53')	Drilling with 30-40,000 # wt., 50 RPM, 1450 # pump. Mud weight 8.9, Viscosity 40, Waterloss 6.2, FC 2/32, pH 11.5.
	26	Drilling 13,773'	(68')	
	27	Drilling 13,798'	(25')	

CHRONOLOGICAL HISTORY PAGE 19 ENERGETICS, INC. WEBER COAL CO.

March 28	Drilling 13,869' (71')	Drilling with 35-40,000 # wt., 48-50 RPM, 1450 # pump. Mud weight 8.9, Viscosity 38, Water- loss 6.2, FC 2/32, pH 11.3.
29	Drilling 13,966' (97')	Drilling with 40-45,000 # wt., 48 RPM, 1450 # pump. Mud weight 8.9, Viscosity 38.
30	Drilling 14,080' (114')	Mud weight 9.0, Viscosity 38, Waterloss 6.2, FC 2/32, pH 11.2.
31	Trip 14,152' (72')	
April l	Drilling 14,217' (65')	Drilling with 38-40,000 # wt., Mud weight 9.0, Viscosity 40, Waterloss 6.2, FC 2/32, pH 11.3.
2	Drilling 14,274' (57')	
3	Drilling 14,310' (36')	Trip for Bit # 30. Drilling with 45,000 # wt., 48 RPM, 1500 # pump, Mud weight 9.0, Viscosity 40, Waterloss 6.0, FC 2/32, pH 11.8.
4	Drilling 14,329' (19')	Mud weight 9.0, Viscosity 41, Waterloss 6.0, FC 2/32, pH 12.0, Trip for hole in drill pipe.
5	Drilling 14,388' (59')	Pump pressure 1525-1550. Mud weight 9.0, Viscosity 39, Water-loss 6.2, FC 2/32, pH 12.0.
6	Drilling 14,411' (23')	Trip for Bit No. 31. Drilling with 40,000 # wt., 40 RPM, 1600 # pump, Mud weight 9.0, Viscosity 41, Waterloss 6.0, FC 2/32, pH 12.0.
7	Drilling 14,462' (51')	
8	Drilling 14,507' (45')	Drilling with 45-48,000 # wt., 45 RPM, 1550 # pump. Mud weight 9.0, Viscosity 38.
9	Trip 14,531' (24')	Preparing to change out rotary table.
10	Drilling 14,542' (11')	Drilling with 45-48,000 # wt., 45 RPM, 1550 # pump. Mud weight 9.0, Viscosity 40, Waterloss 6.2, FC 2/32, pH 12.0.
11	Drilling 14,589' (47')	

CHRONOLOGICAL HISTORY PAGE 20 ENERGETICS, INC. WEBER COAL CO.

April 12	Drilling 14,627' (38')	Mud weight 9.0, Viscosity 37.
13	Drilling 14,690' (63')	Drilling with 44-48,000 # wt., 45 RPM, 1050 # pump. Mud weight 9.0, Viscosity 69, Waterloss 6.0, FC 2/32, pH 12.0. Lost approximately 150 barrels mud at 14,666'-14,668'.
14	Drilling 14,753' (63')	
15	Drilling 14,793' (40')	Drilling with 30,000 # wt., 45 RPM, 1000 # pump. Mud weight 8.9, Viscosity 47.
16	Drilling 14,898' (105')	Drilling with 40-42,000 # wt., 45 RPM, 1025 # pump. Mud weight 8.8, Viscosity 40.
17	Drilling 14,975' (77')	Drilling with 40-45,000 # wt., 45 RPM, 1050 # pump. Mud weight 8.8, Viscosity 40, Waterloss 6.0, FC 2/32, pH 11.8.
18	Drilling 15,041' (66')	Drilling with 42-45,000 # wt., 45 RPM, 1050 # pump, Mud weight 8.9, Viscosity 48, Waterloss 5.8, FC 2/32, pH 12.0.
19	Drilling 15,099' (58')	Drilling with 42-45,000 # wt., 45 RPM, 1050 # pump, Mud weight 8.9, Viscosity 52, Waterloss 5.8, FC 2/32, pH 12.0.
20	Drilling 15,130' (31')	Drilling with 30-45,000 # wt., 45 RPM, 1100 # pump. Mud weight 8.8, Viscosity 53, Waterloss 6.0, FC 2/32, pH 12.0, 1% LCM.
21	Drilling 15,210' (80')	Drilling with 45,000 wt., 45 RPM, 1100 # pump. Mud weight 8.8, Viscosity 48, Waterloss 5.8, FC 2/32, pH 11.5, 2% LCM.
22	Drilling 15,267'(57')	Drilling with 45-48,000 # wt., 45 RPM, 1100 # pump, Mud weight 8.8, Viscosity 50, Waterloss 6.0, FC 2/32, pH 11.5, 2% LCM.
23	Drilling 15,325' (58')	Drilling with 45-48,000 # wt., 45 RPM, 1100 # pump. Mud weight 8.8, Viscosity 46, Waterloss 5.8, FC 2/32, pH 11.5, 2% LCM.

CHRONOLOGICAL HISTORY PAGE 21 ENERGETICS, INC. WEBER COAL CO.

April 24	Drilling 15,418' (93')	Drilling with 45-48,000 # wt., 45 RPM, 1100 # pump. Mud weight 8.8, Viscosity 46, Waterloss 6.0, FC 2/32, pH 11.8, 1% LCM.
25	Tripping 15,453' (35')	Drilling with 45-48,000 # wt., 45 RPM, 1100 # pump, Mud weight 8.9, Viscosity 52, Waterloss 5.8, FC 2/32, pH 11.8, trace LCM.
26	Drilling 15,513 (60')	Drilling with 42-48,000 # wt., 45 RPM, 1150 # pump. Mud weight 8.9, Viscosity 47, Waterloss 5.8, FC 2/32, pH 12.0, trace LCM.
27	Drilling 15,621' (108')	Drilling with 42-48,000 # wt., 45 RPM, 1150-1250 # pump. Mud weight i.i, Viscosity 47, Water- loss 5.8, FC 2/32, pH 12.0.
28	Drilling 15,722' (101')	Drilling with 42-48,000 # wt., 45 RPM, 1150-1200-1300 # pump. Mud weight 8.9, Viscosity 53, Water-loss 6.0, FC 2/32, pH 12.0.
29	Drilling 15,821' (99')	Drilling with 42-45,000 # wt., 45 RPM, 1200 # pump. Mud weight 8.8, Viscosity 48, Waterloss 6.0, FC 2/32, pH 12.0.
30	Circulating 15,841' (20')	Drilling with 45,000 # wt., 45 RPM, 100-1200 # pump. Mud weight 8.9, Viscosity 50, Waterloss 6.0, FC 2/32, pH 12.0, 3% LCM. 4 unit gas kick- 15,830' to 15,841; Lost circulation zone. Lost 300 barrels mud.
May 1	Circulating 15,841' (0')	Circulating mud, losing 21.7 Barrels an hour. Mud weight 8.6, Viscosity 46, Waterloss 6.2, FC 2/32, pH 12.5 3.5% LCM.
2	Waiting 15,841' (0')	Waiting for hole to seal off after spotting 4000 # 100 mesh sand on bottom. Mud weight 8.5, Viscosity 56, Waterloss 6.2, FC 2/32, pH 11.5, 3% LCM. Losing 6 1/4 barrels an hour.

CHRONOLOGICAL HISTORY
PAGE 23
ENERGETICS, INC.
WEBER COAL CO.

May 15	PTD 15,841' (0')	Laying down 4 1/2" drill pipe. Hang liner at 15,676' / top liner 9958'. Cemented with 90 sacks Class "G", 90% SSA, 2% gel, 5% KCL, 5% HR12. Ran temperature survey.
16	PTD 15,841' (0')	Preparing to test BOP. Ran cement bond log. Stuck log at 15,346'. Pulled loose and lost bull plug and bottom centralizer.
17	PTD 15,841' (0')	Picking up 3 1/2" drill pipe. Tested blind rams, pipe rams, and manifold to 3000 psi. Test Hydrill to 1500 psi. Test safety valve and Kelly Cock valve to 3000 psi.
18	PTD 15,841' (0')	Drilling float collar at 15,626'. Recovered logging tool. Tested casing to 750 psi.
19	PTD 15,841' (0')	Trip in with Bit No. 1. Ran cement bond log to 15,657'. Indicated top cement at 14,415' and cement at bottom at casing.
20	Drilling 15,941' (100')	Drilling with 22,000 # wt., 45 RPM, 1200 # pump. Mud weight 8.7, Viscosity 52, Waterloss 6.4, FC 2/32, pH 11.5. Reached 16,000' 6:22 p.m. 5/20/77.
21	Drilling 16,073' (132')	
22	Trip 16,154' (81')	
23	Drilling 16,200' (46')	Drilling with 22,000 # wt., 45 RPM, 1200 # pump. Mud weight 8.7, Viscosity 53, Waterloss 5.8, FC 2/32, pH 12.0.
24	Drilling 16,288' (88')	Drilling with 20,000 # wt., 45 RPM, 1200 # pump.
25	Drilling 16,353' (65')	•
26	Drilling 16,370' (17')	Drilling with 15-20,000 # wt., 45 RPM, 1350 # pump. Mud weight 8.7, Viscosity 56, Waterloss 5.8, FC 2/32, pH 12.1.

CHRONOLOGICAL HISTORY
PAGE 24
ENERGETICS, INC.
WEBER COAL CO.

May	27	Trip 16,406' (36	j')	
	28	Drilling 16,445'	(39')	Drilling with 20,000 # wt., 42 RPM, 1375 # pump.
	29	Drilling 16,504'	(59')	
	30	Drilling 16,523'	(19')	Drilling with 15-20,000 # wt., 44 RPM, 1475 # pump. Mud weight 8.7, Viscosity 58, Waterloss 6.2, FC 2/32, pH 12.2.
	31	Drilling 16,578'	(55')	
June	e 1	Drilling 16,647'	(69')	Drilling with 20,000 # wt., 44 RPM, 1375 # pump. Mud weight 8.8, Viscosity 56, Waterloss 6.0, FC 2/32, pH 12.1.
	2	Drilling 16,717'	(70')	
	3	Trip 16,749' (32	1)	
	4	Trip 16,774' (25	')	
	5	Drilling 16,800'	(26')	Drilling with 20,000 # wt., 44 RPM, 1525 # pump. Mud weight 8.8, Viscosity 53, Waterloss 5.8, FC 2/32, pH 12.2.
	6	Drilling 16,845'	(45')	
	7	Drilling 16,881'	(36')	Drilling with 20-22,000 # wt., 45-50 RPM, 1450 # pump. Mud weight 8.8, Viscosity 55, Waterloss 6.0, FC 2/32, pH 12.1.
	8	Drilling 16,906'	(25')	
	9	Drilling 16,975'	(69')	
	10	Drilling 17,050'	(75')	Drilling with 20,000 # wt., 45 RPM, 1500 # pump. Mud weight 8.8, Viscosity 51, Waterloss 5.4, FC 2/32, pH 12.3.
	11	Drilling 17,130'	(80')	
	12	Drilling 17,199'	(69')	
	13	Drilling 17,232'	(33')	Drilling with 10-20,000 # wt., 45 RPM, 1525 # pump. Mud weight 8.7, Viscosity 54, Waterloss 6.0, FC 2/32, pH 12.1.

CHRONOLOGICAL HISTORY
PAGE 25
ENERGETICS, INC.
WEBER COAL CO.

June 14	PTD 17,301' (69')	Circulating for logs. Mud weight 8.8, Viscosity 57, Waterloss 6.0, FC 2/32, pH 12.2.
15	PTD 17,301' (0')	Going in hole. Ran DIL, BHC Sonic, CNL-Density, CDM by Schlumberger. Logger total depth 17,288'.
16	PTD 17,325' (24')	Preparing to set bridge plug.

BIT RECORD

NO.	SIZE	MAKE	TYPE	SERIAL NO.	DEPTH OUT	FOOTAGE	HOURS
1	12 1/4"	Retip	OSC3	LX512	509	409	18 1/2
2	12 1/4"	Retip ·	S33	4127	1,028	519	37
3	12 1/4"	RR	J22	JT445	1,711	683	58
4	12 1/4"	RR	J22	TL017	2,433	722	86 1/2
5	12 1/4"	Reed	SIG	225780	2,486	53	8 1/4
6	12 1/4"	Reed	FP52	735316	2,680	194	31 1/4
7	12 1/4"	Smith	F2	173DN	3,041	361	44 1/2
1	12 1/4"	Grant	НО	6296	906	806	40
2	12 1/4"	Security	S4T-J	658528	1,069	163	6 3/4
3	12 1/4"	Smith	DT-J	701BJ	2,035	966	59 3/4
4	12 1/4"	нтс	0SC1GJ	WN752	2,452	417	35 1/2
5	12 1/4"	Security	S4T-J	658528	2,532	80	11 1/4
6	12 1/4"	Smith	DT-J	611BR	2,861	329	53 1/4
7	12 1/4"	Security	M4N-J	674526	3,039	178	29 1/4
7	12 1/4"	Smith	F2	173DN	3,158	119	31
8	12 1/4"	Smith	DT-J	151DS	3,276	118	35 3/4
19	12 1/4"	Security	S33	584699	3,323	47	20
10	12 1/4"	Smith	F2	791BP	3,456	133	45
11	12 1/4"	Smith	DG-J	CZ770	3,484	28	14 1/2
17	12 1/4"	Smith	F2	173DN	3,662	178	41 3/4
12	12 1/4"	Smith	F2	923DK	4,321	659	115
13	12 1/4"	Smith	3 - JS	589CW	4,778	457	85 1/4
14	12 1/4"	HTC	J22	VD181	4,999	221	28
15	12 1/4"	Smith	3-JS	453CW	5,067	68	16 1/4
16	12 1/4"	нтс	J22	SF628	5,514	447	87 3/4

NO.	SIZE	MAKE	TYPE	SERIAL NO.	DEPTH OUT	FOOTAG	
17	12 1/4"	Reed	FP53	602128	5,964	450	96 1/2
18	12 1/4"	Smith	3JS	073DK	6,337	373	86 1/4
19	12 1/4"	Reed	FP52	736000	6,575	238	65 3/4
20	12 1/4"	Security	\$84	552205	6,617	42	23 3/4
21	12 1/4"	Smith	DTJ	147DC	6,785	168	36 1/4
22	12 1/4"	нтс	J22	HE792	7,058	273	68 1/4
23	12 1/4"	Smith	F2	766EF	7,398	340	70 3/4
24	12 1/4"	Smith	2JS	755EN	7,876	478	101 3/4
25	12 1/4"	Reed	FP52	313690	8,007	131	40 3/4
26	12 1/4"	Smi th	3JS	BB674	8,184	177	53
27	12 1/4"	Smith	V2HJ	304EP	8,207	23	14
28	12 1/4"	Smith	3JS	370EF	8,492	285	89
29	12 1/4"	нтс	J33	WV974	8,716	224	69 3/4
30	12 1/4"	Smith	3JS	WC947	8,894	178	44
31	12 1/4"	нтс	J33	TC871	8,955	61	14 1/2
32	12 1/4"	Smith	F3	649BX	9,391	436	78 3/4
33	12 1/4"	Reed	FP53	321518	9,473	82	Twist off.
34	12 1/4"	нтс	XDV	VK721	8,810	260	10 1/2
35	12 1/4"	Hycalog	Diamond		8,508	24	11
36	12 1/4"	Security	H7SG	656158	8,515	7	4 1/2
37	12 1/4"	Security	S84	545989	8,551	36	23 3/4
38	12 1/4"	нтс	W7J	PB948	8,554	3	2 1/2
39	12 1/4"	Smith	3JS	736DK	8,598	44	21 1/2
40	12 1/4"	Smith	2JS	705EJ	8,631	33	14
41	12 1/4"	Smith	4JS	171DF	8,640	9	2 1/4
42	12 1/4"	Smi th	4JS	163FF	8,655	15	7 1/4

NO.	SIZE	MAKE	TYPE	SERIAL NO.	DEPTH OUT	FOOTAGE	HOURS
43	12 1/4"	Smith	3JS	618FE	8,658	3	2
38	12 1/4"	HTC ·	W7J	PB948	8,664	6	7
44	12 1/4"	Smith	3JS	153FF	8,688	24	9 1/2
45	12 1/4"	Smith	3 JS	695FA	8,862	174	70 3/4
46	12 1/4"	Smith	3JS	643DK	9,013	151	96 3/4
47	12 1/4"	нтс	J22	VD221	9,174	161	60 1/4
48	12 1/4"	Smith	3 JS	067FH	9,525	351	96 1/4
49	12 1/4"	Smith	3JS	572FF	9,631	106	52
50	12 1/4"	Reed	S52	322480	9,653	22	23
51	12 1/4"	Smith	V2HJ	506EP	9,842	189	42 3/4
52	12 1/4"	Smith	DGJ	CZ600	10,000	158	42
53	12 1/4"	Reed	S13G	305580	10,125	125	84 1/4
54	12 1/4"	Smith	V2J	958EW	10,203	78	37 3/4
55	12 1/4"	Smith	V2HJ	268ER	10,282	79	79
56	12 1/4"	Smith	V2HJ	303EP	10,342	60	32
57	12 1/4"	нтс	OSC3J	AA174	10,474	132	47 3/4
58	12 1/4"	Smith	V2HJ	331EP	10,576	102	32 3/4
59	12 1/4"	Smith	V2J	956EW	10,662	86	30 1/4
1	8 1/2"	HTC	ODVJ	BS184	10,741	76	17 1/4
2	8 1/2"	HTC	J33	VP776	10,905	164	42 3/4
3	8 1/2"	нтс	ODVJ	HW774	11,007	102	24 1/2
4	8 1/2"	Smith	V2J	479AR	11,206	199	49
5	8 1/2"	Smith	T2HJ	LD636	11,435	229	43 3/4
6	8 1/2"	Smith	F3	025HF	11,521	86	11
7	8 1/2"	нтс	X55R	EV218	11,606	85	8
	6 3/4"	Christensen	MC-20	4557008	11,630	24	10 1/2

BIT RECORD PAGE 4

	•						
NO.	SIZE	MAKE	TYPE	SERIAL NO.	DEPTH OUT	FOOTAGE	HOURS
8	8 1/2"	Smith	F7	HB181	11,930	300	30
9	8 1/2"	Smith	F7	DD151	12,176	246	28 1/2
10	8 1/2"	HTC	J88	MD140	12,301	125	21 1/2
11	8 1/2"	HTC	J77	2X602	12,364	63	19 1/4
12	8 1/2"	Security	H100F	709250	12,496	132	34 1/4
13	8 1/2"	Security	H100F	709277	12,594	98	30 1/2
14	8 1/2"	Smith	9JS	788AZ	12,642	48	21 1/2
15	8 1/2"	Reed	FP64	226044	12,708	66	24 1/2
16	8 1/2"	HTC	X55R	EV251	12,782	74	31
17	8 1/2"	Security	H7SG	166834	12,902	120	41
18	8 1/2"	Reed	FP53	212956	13,042	140	41 1/4
19	8 1/2"	Security	H7SG	659755	13,058	16	7 1/2
20	8 1/2"	Security	M88	579081	13,116	58	22 1/4
21	8 1/2"	Reed	FP62	237522	13,149	33	15 1/2
22	8 1/2"	Security	H100F	597460	13,157	8	2 1/2
23	8 1/2"	Security	н100	696932	13,263	106	33 3/4
24	8 1/2"	Smith	9JS	071BC	13,333	60	32 3/4
25	8 1/2"	нтс	X55R	ET746	13,353	30	17
26	8 1/2"	HTC	J33	VT520	13,654	301	83 1/2
27	8 1/2"	нтс	J33	VP768	13,792	138	45 1/2
28	8 1/2"	HTC	J44	TT391	14,152	360	90 3/4
29	8 1/2"	нтс	J44	RG398	14,282	130	43
30	8 1/2"	STC	F-5	452ES	14,320	38	14
15	8 1/2"	Reed	FP64	226044	14,392	72	32 3/4
31	8 1/2"	Security	H-100F	709325	14,531	139	71
32	8 1/2"	нтс	J88	DC784	14,759	228	103 1/4
33	8 1/2"	нтс	J77	TR227	15,105	346	88

BIT RECORD PAGE 5

NO.	SIZE	MAKE	TYPE	SERIAL NO.	DEPTH OUT	FOOTAG	E HOURS
34	8 1/2"	STC	F5	238ET	15,453	348	111
35	8 1/2"	HTC	J44	VH852	15,841	388	90 1/2
1	6 1/2"	HTC	J33	BE574	16,154	313	61 1/2
2	6 1/2"	нтс	J44	VF466	16,356	202	59 3/4
3	6 1/2"	Reed	FP72	328731	16,406	50	25 3/4
4	6 1/2"	HTC	J33	CV465	16,516	110	44 1/4
5	6 1/2"	Smith	F5	114 FA	16,749	233	89 1/2
6	6 1/2"	HTC	J44	ZK223	16,882	133	71
7	6 1/2"	нтс	J33	BE575	17,217	335	109
8	6 1/2"	HTC	J33	BE704	17,325	108	Total Depth Log

DEVIATION RECORD

DEPTH	DEVIATION	DEPTH	DEVIATION
118	1°	1,897	3/4°
234	1 1/2°	1,991	1°
290	1°	2,085	1°
352	1°	2,180	1°
416	1°	2,274	1 1/4°
509	1°	2,369	1 1/2°
569	1°	2,432	1 3/4°
631	1/2°	2,486	1 3/4°
727	1°	2,553	1 1/2°
790	1°	2,616	1 1/2°
853	1°	2,680	1 1/4°
916	1°	2,748	1 1/2°
979	1°	2,810	2°
1,028	1 3/4°	2,842	1 3/4°
1,079	1°	2,873	1 1/4°
1,133	1°	2,936	2°
1,195	1 1/4°	2,967	1 3/4°
1,266	1°	3,041	2°
1,330	1°	3,095	2 1/4°
1,393	1°	3,127	2 1/4°
1,446	3/4°	3,158	2 1/2°
1,550	3/4°	3,182	2 1/4°
1,614	1°	3,214	2 1/4°-
1,667	1°	3,245	2 1/2°+
1,711	3/4°	3,277	2 1/2°
1,802	1/2°	3,310	2 1/2°
		3,323	2 1/4°

		D F D T II	DEVIATION
DEPTH	DEVIATION	DEPTH	
3,373	2 1/4°	4,192	1 1/4°
3,404	2 3/4°	4,233	1 1/2°
3,436	2 · 3/4°	4,255	2°
3,456	2 1/2°	4,286	1 3/4°
3,484	2 1/4°	4,318	2 1/4°
3,531	1 3/4°	4,357	1 1/4°
3,562	1 1/2°	4,388	1 1/4°
3,593	1 1/4°	4,420	1 1/4°
3,635	1 3/4°+	4,451	1 1/4°
3,656	1 3/4°	4,514	1 1/4°
3,688	1 3/4°	4,576	1 1/4°
3,719	2 1/4°	4,639	2°
3,750	1°	4,671	1 1/2°+
3,782	1/2°	4,702	1 3/4°
3,814	1°	4,733	1 1/2°
3,845	1 3/4°	4,778	2°
3,876	1 1/4°	4,830	2 1/4°
3,908	1°	4,862	2 1/4°
3,939	1 1/4°	4,893	2°
3,972	1 1/4°	4,924	2 1/4°
4,003	1 1/4°	4,955	2°
4,034	2 3/4°	4,987	2°
4,066	3/4°	5,013	2 1/4°
4,097	1 1/2°	5,046	2°
4,129	1 1/4°	5,081	2 3/4°
4,160	1 1/2°	5,113	2 3/4°
4,100	•		

DEPTH	DEVIATION	DEPTH	DEVIATION
5,145	2°	6,114	3°
5,176	2 1/4°	6,146	3°
5,207	2°	6,177	3 1/4°
5,237	2°	6,209	3°
5,270	2 3/4°	6,241	2 1/2°
5,302	2°	6,272	1 1/2°
5,333	2 1/2°	6,304	3° TD
5,365	2°	6,335	3° TD
5,396	2°	6,365	3 1/4° WL
5,428	2°	6,365	3° TD
5,459	2 3/4°	6,397	3° TD
5,491	2 1/4°	6,429	3° TD
5,514	2 3/4°	6,459	3° TD
5,554	2 3/4°	6,491	3° TD
5,585	2 3/4°	6,522	3° TD
5,617	2 3/4°	6,554	3° TD
5,649	2 1/2°	6,575	3 1/2°
5,711	3°	6,579	3° TD
5,742	3 1/8°	6,610	3° TD
5,774	2 3/4°	6,617	3 1/2°
5,837	2 3/4°	6,642	3° TD
5,901	3 3/4°	6,674	3° TD
5,932	3°	6,705	3° TD
5,964	2 1/2°	6,737	3 3/4°
6,020	3°	6,785	3 3/4°
6,051	3°	6,863	3 1/4°
6,083	3°	6,888	3° TD

DEVIATION RECORD PAGE 4

DEPTH	DEVIATION	DEPTH	DEVIATION
6,927	3° TD	7,806	3°
6,958	3° TD	7,838	4 °
6,958	3 1/4°	7,869	4 1/2°
6,990	3 1/2° TD	7,901	4 1/2°
7,021	3° TD	7,932	4 1/2°
7,053	3 1/2°	7,964	4 1/2°
7,091	3°	7,996	5°
7,116	3°	8,007	5°
7,147	3 1/2°	8,028	5°
7,148	3 1/2°	8,059	5°
7,240	3°	8,090	4 1/2°
7,272	2 1/2° TD	8,146	4 1/2°
7,304	3 1/2° TD	8,172	5°
7,334	3 1/2°	8,184	5 1/2° TD
7,398	3 1/2°	8,184	5 3/4°
7,430	3 1/2°	8,207	5 1/4°
7,462	3 1/2°	8,223	5°
7,493	3 1/2°	8,303	5°
7,524	3 1/4°+	8,349	5°
7,587	3 1/2°	8,381	5 1/2°
7,617	4°	8,412	5°
7,650	3 1/2°	8,444	5 1/2°
7,680	3 1/2°	8,476	5°
7,711	3 1/2°	8,492	5 3/4°
7,743	4° TD	8,569	5 1/2°
7,743	3 3/4°	8,600	5 1/2°
7,775	3°	8,632	5 1/2°

DEVIATION RECORD PAGE 5

DEPTH	DEVIATION	DEPTH	DEVIATION
8,644	6°	8,484	6 1/4°S 74°E
8,694	· 5 1/2°	8,486	8° S 76°E
8,716	5 1/2°	8,517	5° S 74°E
8,726	5 3/4°	8,536	4 3/4°S 70°E
8,758	6°	8,563	5° S 74°E
8,790	6 1/2° TD	8,595	5° S 77°E
8,820	5 3/4° WL	8,631	5 1/2°
8,852	5 1/2°	8,610	4 3/4°S 73°E
8,884	5 1/2°	8,719	4°
8,916	5 1/2°	8,751	4°
8,946	5 1/2°	8,770	4 3/4°
8,981	5 1/2°	8,812	4 1/2°
9,012	5 1/2°	8,844	4 3/4°S 74°E
9,043	6°	8,916	4 3/4°
9,073	5 1/2°	8,982	4 1/4°
9,105	6°	9,024	4°
9,136	6°	9,055	4 1/2°
9,128	6 1/2°	9,085	4 1/4°S 74°E
9,189	6 1/2°	9,145	4 1/4°
9,231	6°	9,230	3 3/4°
9,264	6 1/2°	9,293	4 1/4°
9,264	6° WL	9,360	4°
9,358	6 1/2°	9,468	4 1/4°
9,389	6°	9,525	4 1/2°
9,391	6°	9,554	4 1/2°
9,421	6°	9,604	5°
9,453	6°	9,647	4 3/4°

DEVIATION RECORD PAGE 6

DEPTH	DEVIATION	DEPTH	DEVIATION
9,713	5°	15,105	7°
9,783	· 5 1/2°	15,453	7°
9,842	5 3/4°	15,453	Misrun
9,917	6°	16,154	14°+
9,987	5 1/2°	16,420	18°
10,000	6°	16,516	22°
10,125	5 1/2°	16,749	46°
10,203	5°	16,732	28 1/2°
10,342	5 1/4°	16,882	22°
10,474	5°	16,950	33 1/2°
10,576	5 1/4°	17,217	33 1/2°
10,741	5 1/2°	17,301	34°
10,905	5 3/4°		
11,435	5°		
11,606	7°		
11,930	8 1/4°		
12,176	8 1/4°		
12,364	8° .		
12,594	8°		
12,708	9°		
12,902	8 1/2°		
13,263	8°		
13,654	7°		
13,792	7 3/4°		
14,152	6 1/2°		
14,282	7°		

FORMATION TOPS

FORMATION	SAMPLE DEPTH	LOG TOP	DATUM
Lower Oyster Ridge	Surface		
Coalville	450'		
Chalk Creek	700'		
Spring Canyon	3,080'		
Longwall		3,203'	+ 2,799'
Aspen /		3,306'	+ 2,696'
Kelvin	3,530'	3,532'	+ 2,470'
Gannett	7,700'	and any and any and any	
Stump			
Preuss	~~~~	8,440'	- 2,438'
Preuss Evaporites	9,055'	9,064'	- 3,062'
	Plug Back To 8452'		
Preuss Evaporites	9,070'	9,069'	- 3,067'
Base Evaporites	9,445'	9,438'	- 3,436'
Arapien	9,445'	9,438'	- 3,436'
Twin Creek Transition	10,450'	10,447'	- 4,445'
Twin Creek Limestone	10,580'	10,569'	- 4,567'
"Red Marker"	10,885'	10,891'	- 4,889'
"Oolitic Marker"	11,340'	11,344'	- 5,342'
Gypsum Springs	11,360'	11,368'	- 5,366'
Nugget	11,462'	11,463'	- 5,461'
Popo Agie	12,620'	12,626'	- 6,624'
Gartra	12,910'	12,908'	- 6,906'
Ankareh	13,250'	13,250'	- 7,248'
Thaynes	14,098'	14,087'	- 8,085'
Woodside	15,151'	15,148'	- 9,146'
Thaynes (Overturned)		15,541'	- 9,539'

FORMATION TOPS PAGE 2

FORMATION	SAMPLE DEPTH	LOG TOP	DATUM	
Ankareh (Overturned)		16,588'	- 10,586'	
Total Depth	17,325'	17,289'		

SAMPLE DESCRIPTION

30 Foot Samples 0-3040' 10 Foot Samples 3040-17,	325'
100-300'	Shale, gray-dark gray, moderately soft, silty, slightly sandy, micaceous.
300-450'	Shale, dark gray-black, moderately soft, silty, micaceous with stringers Siltstone, gray, firm, grading to Sandstone, gray, very fine grained, sub angular-sub rounded, salt and pepper, very silty, tite.
450-465'	As above with Sandstone, white, light gray, very fine-fine grain, sub angular-sub rounded, occasionally slight salt and pepper, quartzitic, moderately clay filling.
465-485'	Shale and Siltstone as above.
485-500'	Coal.
500-590'	Shale, dark gray-black, moderately soft, silty, occasionally slightly sandy, micaceous, with occasional stringers Siltstone, gray, firm, occasionally slightly salt and pepper.
590-660'	Shale and Siltstone as above occasionally grading to Sandstone, gray, very fine grain, sub angular-sub rounded, occasionally slight salt and pepper, silty, tite.
660-690'	Shale as above with occasional stringers Claystone, gray to gray-green, soft, gummy.
690-720'	Very poor samples - Lost circulation material.
720-810'	Samples as above, trace Shale, red to reddish brown, some gray to gray-green, moderately soft, sub waxy.
810-970'	Shale, varicolored, red, reddish brown, gray, gray-green, moderately soft, sub waxy with stringers Sandstone, light gray, very fine-fine grained, sub angular-sub rounded, quartzitic, firm, tite, occasional light greenish cast.
970-1100'	Shale, varicolored as above becoming predominately red to reddish brown with Shale, gray, gray-green and Sandstone as above.
1100-1140'	Shale, varicolored as above trace Shale, maroon, sub waxy.
1140-1330'	Shale, varicolored as above with numerous stringers Sandstone, light gray, very fine-fine grained, sub angular, firm, tite, occasional slight salt and pepper.
1330-1490'	As above with occasional stringers Sandstone, tan, very fine-fine grained, sub angular, firm, quartzitic.

SAMPLE	DESCRIPTION
DAGE 2	

1490-1700'	Shale and Sandstone as above.
1700-1770'	As above with Siltstone, maroon-red, light gray, firm.
1770-1830'	As above with Sandstone, light gray, very fine-fine grain, occasionally medium grained, sub angular, firm, tite, slight salt and pepper, pyritic in part.
1830-2200'	Shale, varicolored as above with Sandstone, light gray, very fine-fine grain, sub angular, moderately firm, tite, slight salt and pepper.
2200-2260'	No samples. LCM. Note: Samples 2260-2600' very poor due to LCM. Interpretation limited to very minute screenings.
2260-2650'	Shale, varicolored, red to reddish brown, gray, gray-green, moderately soft, sub waxy with stringers Sandstone, light gray, very fine-fine grain, sub angular, firm to moderately soft, slight salt and pepper, tite. Occasionally slight pyritic in part.
2650-2750'	Shale, varicolored, predominately light gray to gray-green, moderately soft, sub waxy with occasional stringers Siltstone, gray, salt and pepper, firm.
2750-2800'	Shale as above with Sandstone, gray-dark gray, very fine grain, sub angular, slight salt and pepper, firm, tite, silty.
2800-28201	Shale as above with some Shale dark gray-green, sub waxy, trace Shale, dark gray-black, silty, carbonaceous. (Cavings)
2820-2890'	Shale, light gray to light gray-green, moderately soft, sub waxy, with stringers Sandstone, light gray-tan, very fine grain, sub angular, occasional slight salt and pepper, firm, tite, trace Shale, dark gray-black, silty, carbonaceous as above.
2890-3040'	Shale as above, with larger percentage Shale, dark gray-black, silty, carbonaceous.
3040-3070'	Shale, gray-dark gray, moderately soft, slight sub waxy with Shale, dark gray-black, carbonaceous.
3070-3080'	Coal.
3080-3110'	Shale, dark gray-black to brownish black, moderately firm, carbonaceous, silty.
3110-3180'	As above with Sandstone, gray-light gray, very fine-fine grain, occasional medium grained, sub angular-sub rounded, occasional rounded, moderately soft, salt and pepper, tite, clay filled.
3180-3240'	As above with stringers Coal.

3240-3280'	Very poor samples. LCM.
3280-3300'	Sandstone, light gray, very fine grained, sub-angular-sub rounded, moderately firm, very slight salt and pepper, with thin black, carbonaceous partings.
3300-3350'	Shale, dark gray-brownish black, firm, silty, sandy grading to Siltstone, hard, tite.
3350-3370'	Shale as above with stringers Limestone, gray, firm, shaly.
3370-3390'	As above with Sandstone, light gray, very fine grain, sub angular-sub rounded, quartzitic, firm, tite, slightly carbonaceous.
3390-3490'	Shale, light-dark gray, dark gray, silty, light gray, sub waxy, moderately soft with stringers Coal and Sandstone, gray, very fine grain, sub angular-sub rounded, firm, tite.
3490-3500'	Shale as above with Shale, light gray, to gray-green, sub waxy.
3500-3520'	Shale as above with trace Ammonite fragments.
3520-3530'	Sandstone, white, very fine-fine grained, sub angular-sub rounded, firm, tite.
3530-3540'	As above with trace Shale, reddish brown-maroon, soft, sub waxy, to slightly silty.
3540-3550'	Shale, light gray to gray-green, sub waxy, with Shale, red-brown, maroon, sub waxy to slightly silty.
3550-3560'	Shale, tan-brown, silty to sub waxy, with stringers Siltstone, tan, firm grading to Sandstone, tan-brown, very fine grain, sub angular-sub rounded, hard, tite.
3560-3570'	Shale, light gray to gray-green, Shale, red-brown as above.
3570-3600'	Shale, varicolored, predominately red brown-tan, some maroon, silty, sandy grading to Siltstone and Sandstone. Some Shale, gray-green, sub waxy.
3600-3610'	Shale, tan-brown, silty to sub waxy with Siltstone and Sandstone, tan-brown, very fine grain, sub angular-sub rounded, firm, tite, trace Sandstone, white, very fine-fine grained, occasional medium grained, sub angular-rounded, firm, tite.
3610-3690'	Shale, varicolored, red-brown, gray, gray-green, lavender, with stringers Sandstone, white-light gray, very fine-fine grained, sub angular-sub rounded, firm, tite.
3690-3750 '	Shale, predominately gray-medium gray, moderately firm, slightly sub waxy, to slightly silty, some stringers Sandstone, gray, very fine-fine grained, sub angular-sub rounded, firm, tite.

3750-3790'	Sandstone, tan, very fine-fine grained, sub angular-sub rounded,
	firm, tite, silty grading to Siltstone, hard, tite.
3790-3830'	As above with Shale, red brown, silty and gray-green, sub waxy.
3830-3890'	Shale, varicolored as above, red brown, silty, light gray-green, sub waxy, some maroon, soft.
3890-3930'	Shale, as above predominately reddish brown, silty, firm with Sandstone, gray, very fine-fine grained, occasional medium grained, sub angular-sub rounded, glassy, quartzitic, firm, tite.
3930-4000'	Shale, varicolored, gray, gray-green, maroon, sub waxy and Shale, reddish-brown, silty, and Shale, salmon, silty to sub waxy with stringers Siltstone, reddish-brown, firm.
4000-4030'	Shale as above predominately light gray, soft, sub waxy, with Sandstone as above.
4030-4060'	Shale as above predominately reddish-brown, silty grading to Siltstone.
4060-4080'	Sandstone, gray-tan, very fine grained, sub angular-sub rounded, quartzitic, firm, tite, silty grading to Siltstone, firm.
4080-4210'	Shale, varicolored as above with stringers Siltstone gray to reddish brown, firm.
4210-4250'	Shale as above, slightly more reddish-brown in color.
4250-4260'	Sandstone, gray-tan, very fine grained, sub angular-sub rounded, quartzitic, firm, tite, silty, grading to Siltstone.
4260-4290'	Shale, varicolored as above.
4290-4360'	Shale as above becoming more reddish-brown, firm, silty, grading to Siltstone.
4360-4370'	As above with Sandstone, gray-tan, very fine grain, sub angular-sub rounded, firm, quartzitic, tite, silty, grading to Siltstone.
4370-4400'	Shale varicolored, predominately reddish-brown, firm, silty.
4400-4490'	Shale as above with Sandstone as above.
4490-4530'	Shale as above predominately reddish-brown, firm, silty, grading to Siltstone, firm, Sandstone, tan, very fine grained, sub angular-sub rounded, firm, tite.
4530-4560'	Sandstone, tan-orange, very fine grained, sub angular-sub rounded, quartzitic, moderately soft, friable, becoming slightly more medium grained at base.

SAMPLE	DESCRIPTION
DAGE 5	

4560-4830'	Shale, varicolored, gray, gray-green, reddish-brown, some red- green mottled, sub waxy with stringers Siltstone, gray-tan, firm, Sandstone, gray-tan, very fine grained, sub angular-sub rounded, firm, tite.
4830-4860'	Shale as above becoming predominately reddish-brown.
4860-4930'	As above becoming predominately light gray, stringers Siltstone, Sandstone, gray-tan, very fine grained, sub angular-sub rounded, quartzitic, firm, tite.
4930-4980'	Shale as above becoming predominately reddish-brown.
4980-5000'	As above with Sandstone, gray, very fine-fine grained, sub angular-sub rounded, slight salt and pepper, firm, tite.
5000-5030'	Very poor samples. Hole in pipe.
5030-5130'	Shale, varicolored, gray, gray-green, reddish-brown, moderately firm sub waxy to slightly silty, occasional stringers Siltstone, gray, firm.
5130-5470'	Shale, varicolored, as above, red-brown 60%, gray, gray-green 40%, sub waxy, occasionally slightly silty with stringers Siltstone, gray-tan, firm and Sandstone, gray-tan, very fine grained, sub angular-sub rounded, quartzitic, firm, tite, some pine mineral accessories.
5470-5490'	As above with Sandstone, gray, very fine-fine grained, sub angular- sub rounded, slightly salt and pepper, firm, tite, glassy.
5490-5550'	Shale, varicolored, predominately light gray, sub waxy with Shale, red-brown, occasional stringers Siltstone, reddish-brown, firm; Limestone, gray-tan, dense, firm.
5550-5600'	Shale as above predominately reddish-brown, sub waxy, slightly silty.
5600-5610'	Sandstone, light gray, very fine-medium grained, occasional coarse grained, sub angular-rounded, salt and pepper, firm, tite.
5610-5630'	Shale, reddish-brown, gray as above.
5630-5640'	Sandstone as above becoming more very fine-medium grained.
5640-5650'	Shale as above.
5650-5670'	Sandstone, as above becoming very fine-coarse grained, sub angular-rounded, salt and pepper, firm, tite.
5670-5880'	Shale, varicolored, predominately light gray-gray, sub waxy, firm, with streaks Shale, reddish-brown, sub waxy, slightly silty, stringers Limestone, gray-tan, dense, firm.

SAMPLE	DESCRIPTION
PAGE 6	

5880-5950'	Shale as above with Sandstone, gray, very fine-fine grained, occasion-ally medium grained, sub angular-sub rounded, slight salt and pepper, hard, tite.
5950-6020'	Shale as above predominately gray-lavender, maroon with streaks reddish-brown, sub waxy, brittle.
6020-6050'	Sandstone, gray, very fine-fine grained, occasionally medium-coarse grained, sub angular-sub rounded, slight salt and pepper, hard, tite, some sub angular-angular quartzitic and chert fragments.
6050-6140'	Shale, varicolored predominately gray as above.
6140-6190'	Shale, as above becoming more reddish-brown, sub waxy, slightly silty with stringers Siltstone, reddish-brown, firm and Sandstone, salmon, very fine-fine grained, sub angular-sub rounded, quart-zitic, firm, tite.
6190-6220'	Sandstone, gray, very fine-medium grained, sub angular-rounded, slight salt and pepper, poorly sorted, grading to Sandstone, gray, very fine-fine grained, sub angular-sub rounded, quartzitic, firm, tite.
6220-6300'	Shale, varicolored, predominately reddish-brown, with streaks gray, lavender, sub waxy.
6300-6400'	Shale, as above becoming predominately reddish-brown, streaks gray, sub waxy.
6400-6420'	As above with Sandstone, gray-tan, very fine-fine grained, sub angular-sub rounded, quartzitic, firm, tite.
6420-6540'	Shale, varicolored, predominately reddish-brown, slightly silty, to sub waxy, firm, some gray, sub waxy.
6540-6560'	Sandstone, gray, very fine-fine grained, sub angular-sub rounded, quartzitic, firm, tite, some porosity and permeabilitity, some friable
6560-6900'	Shale, varicolored as above predominately reddish-brown, slightly silty to sub waxy, streaks gray, maroon, lavender, Shale, gray and tan Limestone.
6900-6910'	As above with traces Sandstone, white, very fine-coarse grained, sub angular-sub rounded, firm, tite.
6910-7090'	Shale, varicolored, predominately red to reddish-brown, firm, sub waxy to slightly silty with stringers Limestone, gray-tan-pink, firm, dense.
7090-7130'	As above with stringers Sandstone, gray, very fine-fine grained, sub angular-sub rounded, slight salt and pepper, firm, tite.

7130-7220'	Shale, gray to gray-green, moderately firm, sub waxy with stringers Limestone, gray-tan-brown, firm, dense to slightly micro crystalline.
7220-7230'	Sandstone, white-tan, very fine-fine grained, sub angular-sub rounded, quartzitic, moderately firm, tite.
7230-7540'	Shale, varicolored, predominately red to reddish-brown, silty, occasional grading to Siltstone, reddish-brown, firm, stringers Sandstone, white-tan, very fine-fine grained, sub angular-sub rounded, quartzitic, firm, tite, occasional streaks porosity and permeabilitity.
7540-7570'	Sandstone, white, very fine-fine grained, occasionally medium grained, sub angular-sub rounded, occasionally rounded, quart-zitic, firm, tite.
7570-7630'	Shale as above.
7630-7650'	As above with Sandstone, white, very fine grained, sub angularsub rounded, quartzitic, firm, tite.
7650-7670'	Shale as above.
7670-7700'	Sandstone, white, very fine-medium grained, sub angular-sub rounded, slight salt and pepper, firm, tite.
7700-7800'	Shale, brick red, moderately firm, silty to slightly sub waxy with stringers Sandstone, red, very fine grained, sub angularsub rounded, quartzitic, moderately firm, tite.
7800-7860'	Shale, varicolored with some Shale, brown, firm, silty.
7860-7870'	No sample.
7870-7910'	Very poor samples, changing over mud system after trip.
7910-8040'	Shale, as above with increase in Shale, tan-brown, sub waxy, silty, grading to Siltstone; Sandstone, tan-brown, very fine-fine grained, sub angular-sub rounded, firm, tite.
8040-8050'	As above with Sandstone, tan-brown, very fine-medium grained, sub angular-sub rounded, firm, tite.
8050-8260'	Shale, varicolored in part, predominately tan-brown as above with stringers Siltstone, tan-brown, firm, grading to Sandstone, tan-brown, very fine grained, sub angular-sub rounded, quartzitic, firm, tite.
8260-8280'	No sample.
8280-8380'	Shale, Siltstone and Sandstone as above.

SAMPLE	DESCRIPTION
DAGE 8	

9180-9440'

9440-9460'

No sample.

8380-8510'	Generally very poor samples. Probable Shale, light-medium brown, sub waxy to silty, some Shale, reddish-brown, silty, with stringers Siltstone as above.
8510-8540'	As above with Sandstone, tan-brown, very fine-fine grained, sub angular-sub rounded, occasional slight salt and pepper, occasional slight glauconite, firm, tite.
8540-8640'	Shale, Siltstone, tan-brown, as above.
8640-8670'	No sample or very poor sample.
8670-9010'	Shale, varicolored in part, predominately light-dark brown, silty, firm, with stringers Siltstone, light tan-brown, firm.
9010-9020'	As above with trace Limestone, brown, dense, moderately firm.
9020-9030'	Shale and Sandstone as above.
9030-9300'	Samples Shale and Siltstone as above. Drilling time indicates probable salt section.
9300-9473'	As above to Salt crystals in samples. Possible stringers clastic as above.
9473-	Fish cemented in hole.
	PLUG BACK TO 8452'
8452-8484'	Cement.
8484-8560'	Very poor samples.
8560-9040'	Shale, light-medium grown, moderately firm, silty, occasionally grading to Siltstone, brown, slight calcareous, occasional thin interbeds Sandstone, tan-brown, very fine grained, sub angular-sub rounded, moderately firm, tite.
9040-9055'	As above. (Probable salt from drilling time)
9055-9065'	Shale; Siltstone as above.
9065-9110'	Probable Salt. Occasional crystals Salt in samples, section interpreted from drilling time.
9110-9180'	Shale; Siltstone, brown-red with interbedded Salt.

Salt with few interbeds Shale and Siltstone, red-brown, firm.

SAMPLE DESCRIPTION PAGE 9	
9460-9550'	Shale, light-medium gray, moderately firm, slightly silty to sub waxy, slightly calcareous, with Shale, red brown, silty, firm.
9550-9660'	Shale, as above with stringers Claystone, light gray, soft, occasional stringers Siltstone, light gray, firm, tite.
9660-9690'	Very poor samples. LCM
9690-9890'	Shale, light-medium gray, soft, calcareous with stringers Clay-stone as above.
9890-9900'	No sample.
9900-10,000'	Shale as above becoming slightly darker, more medium gray, calcareous with occasional stringers Siltstone as above.
10,000-10,020'	No sample.
10,020-10,120'	Shale, dark gray, calcareous, moderately soft.
10,120-10,140'	No sample.
10,140-10,210'	Shale, dark gray as above with Siltstone, light gray, moderately firm, calcareous.
10,210-10,450'	Shale, medium gray, occasional dark gray, moderately soft, calcareous, slight fissile with occasional stringers Claystone, light gray, soft, and Siltstone, light gray, firm, calcareous.
10,450-10,585'	Shale, gray-dark gray, occasional brownish gray, slightly firmer than above, much more limy, brittle, grading to very shaly Limestone.
10,585-10,640'	As above with Limestone, gray-tan, occasional gray-brown, hard, dense, occasional calcite seams on micro fractured surface.
10,640-10,665'	Limestone, gray-tan, occasionally brown, hard, dense with occasional stringers Limestone, gray, moderately firm, dense, argillaceous.
10,665-10,790'	Limestone, gray to gray-brown, some brown, firm, dense, trace calcite on micro fracture surfaces. Some interbeds Limestone, gray, moderately soft, argillaceous.
10,790-10,800'	As above with trace oolites in gray-gray brown Limestone.
10,800-10,810.	As above slightly more oolites, trace Limestone, gray, soft, very argillaceous.
10,810-10,820'	Limestone, light-medium gray, very soft to firm, very argillaceous, grading to very limy Siltstone. Some stringers Shale, light gray, very soft, calcareous.
10,820-10,830'	Shale, medium-dark gray, firm, limy, with Limestone, medium-dark gray, to gray-tan, firm, dense.

10,830-10,860'	Limestone, gray-tan, dense, firm, trace calcite seams on micro fracture surfaces.
10,860-10,870'	Shale, dark gray to gray-brown, firm, limy with Limestone as above. (very poor sample) Abundant metal shavings (hard band) trace sub angular-sub rounded, quartz fragments, trace Siltstone, red to red-brown.
10,870-10,905'	Shale, salmon to pale orange red, very soft, gypsiferous. Some free white crystalline anhydrite and white fluffy anhydrite.
10,905-10,910'	Very poor samples.
10,910-10,920'	Shale, red to red brown, silty, calcareous grading to Siltstone with Limestone, gray, firm, dense.
10,920-10,930'	Siltstone, light gray, moderately soft, non calcareous to slightly calcareous with Limestone, light-medium gray, moderately soft, dense, argillaceous.
10,930-10,940'	As above with Limestone, gray-tan, firm, dense with Shale, light-medium gray, soft, calcareous.
10,940-10,950'	Limestone, light-medium gray, moderately firm, dense; Limestone, light gray, soft, argillaceous with stringers Shale, light-medium gray, soft, calcareous.
10,950-10,960'	Shale, gray-dark gray, firm, calcareous; Shale, reddish-brown, silty with Limestone, medium-dark gray, firm, dense.
10,960-10,980'	As above with Limestone, medium gray, moderately firm, argillaceous, oolitic, Limestone, dark gray, dense, firm, oolitic.
10,980-10,990'	Limestone, light-medium gray, moderately soft, argillaceous, oolitic, with Limestone, dark gray, dense, abundant white anhydrite.
10,990-11,000'	Siltstone, gray, firm, calcareous with Limestone, gray, firm, dense to micro crystalline; Shale, dark gray, firm, calcareous.
11,000-11,120'	Shale, dark gray to brownish black, firm, brittle, calcareous with stringers Limestone, dark gray, firm, dense.
11,120-11,200'	Shale and Limestone as above with abundant calcite.
11,200-11,210'	No sample.
11,210-11,220'	Logged after trip. Very poor sample.
11,220-11,250'	Limestone, brown, moderately firm, dense, argillaceous in part, platey. Abundant white calcite.

11,250-11,280'	Shale, medium-dark gray, moderately soft, calcareous with some Shale, red, firm, silty, some stringers Limestone as above.
11,280-11,290'	Limestone, brown, moderately firm, dense, platey with Limestone, tan-brown, blotchy, dense to micro crystalline, moderately firm, argillaceous, abundant white calcite.
11,290-11,340'	Limestone, as above, with Shale, dark gray-brown, firm, platey, limy, grading to Limestone. Abundant white calcite.
11,340-11,360'	Limestone, tan-brown, moderately soft, dense to slightly micro crystalline, argillaceous, very oolitic.
11,360-11,370'	Limestone, light tan, moderately firm, dense, slightly dolomitic with Shale, red to reddish brown, moderately soft, silty in part, very anhydritic in part. Some Shale, pale green, soft, sub waxy.
11,370-11,410'	Shale, orange-red, moderately soft, anhydritic with few interbeds Shale, pale green, as above, abundant free anhydrite.
11,410-11,440'	Shale and anhydrite as above with trace chert.
11,440-11,460'	Shale, medium-dark gray, calcareous, firm with stringers Limestone medium-dark gray, dense to micro-crystalline, firm, argillaceous. Trace dead oil stain - No fluorescence or cut.
11,460-11,540'	Sandstone, white, very fine-fine grained, occasionally medium grained, sub angular-rounded, moderately soft, friable, tite, with anhydrite cement. No stain or fluorescence.
11,540-11,606'	Sandstone, white, as above, fairly poorly sorted, slightly less heavily cemented. <u>No stain or fluorescence</u> .
11,606-11,630'	Core No. 1 (See Core Description)
11,630-11,680'	Sandstone, as above in Core No. 1. No apparent shows.
11,680-11,840'	Sandstone, white, very fine grained, occasional fine grained, sub- angular-sub rounded, quartzitic, moderately firm, some porosity, moderately tite. No stain or fluorescence.
11,840-11,980'	Sandstone as above becoming slightly more predominately very fine-fine grained.
11,980-12,290'	Sandstone, white, predominately very fine grained, with streaks fine grained, sub angular-sub rounded, quartzitic, moderately soft-firm, some porosity, moderate permeability, some fine pyrite. No stain or fluorescence.
12,290-12,320'	Sandstone, as above with few Shale partings, medium-dark red, firm, sub waxy.

SAMPLE	DES	SCRIP	TION
PAGE 1	2		

12,320-12,490'	Sandstone, as above with Sandstone, tan-pink, very fine- fine grained, sub angular-sub rounded, moderately firm, tite, quartzitic.
12,490-12,510'	Sandstone as above becoming more red in color.
12,510-12,600	Sandstone, white, very fine-fine grained, sub angular-sub rounded, quartzitic, hard, tite, glassy in part.
12,600-12,620'	As above with Shale, dark red, firm, sub waxy.
12,620-12,690'	Shale, red-salmon, moderately firm, sub waxy to slightly silty, some shale, pale green, sub waxy.
12,690-12,700'	As above with chert.
12,700-12,800'	Shale, red brown to brick red, moderately firm, slightly silty to sub waxy with stringers Shale, pale green, sub waxy and Shale, gray-green to red-green mottled.
12,800-12,870'	Shale, as above predominately red-brown to brick red as above.
12,870-12,910'	Shale as above with stringers Limestone, tan, dense, firm.
12,910-12,950'	Shale as above with Sandstone, white, very fine grained, sub angular-sub rounded, moderately firm, tite with Shale, gray, gray-green, moderately firm, sub waxy.
12,950-12,990'	As above with Sandstone becoming more very fine-fine grained, tan- pink, moderately soft, traces conglomeratic Sandstone.
12,990-13,010'	Shale, red brown to brick red, moderately soft, silty to sub waxy in part.
13,010-13,050'	Sandstone, white, very fine-coarse grained, conglomeratic, sub angular-sub rounded, occasionally rounded, very hard, tite, with streaks Shale, red and gray as above.
13,050-13,070'	Shale, red brown, brick red and gray as above.
13,070-13,100'	Sandstone, pink-red, very fine-fine grained, sub angular- sub rounded, hard, tite, glassy with stringers Shale, red and gray as above.
13,100-13,170'	Very poor sample, Shale, as above with stringers Sandstone, white, coarse grained, conglomeratic, hard, tite; Sandstone, white, very fine-medium grained, sub angular-sub rounded, poorly sorted, hard, tite, trace quartz fragments.
13,170-13,200'	Shale, red brown, silty, moderately firm, with streaks Shale, gray-lavender, moderately soft, sub waxy.

SAMPLE	DESCRIPTION
PAGE 13	}

	·
13,200-13,250'	As above with Sandstone, white-pink, very fine-fine grained, occasionally medium grained, sub angular-sub rounded, firm, tite, glassy with Siltstone, red, trashy.
13,250-13,360'	Shale, varicolored, predominately red to reddish-brown, silty in part, calcareous, with stringers Shale, gray, gray-green, lavender, moderately, firm, sub waxy.
13,360-13,720'	Shale, red to red brown, moderately firm, silty to sub waxy in part, with numerous interbeds Siltstone, red-brown, moderately firm, slightly calcareous, slightly sandy.
13,720-13,740'	As above with Siltstone grading to Sandstone, tan-red, very fine-fine grained, sub angular-sub rounded, hard, tite, glassy.
13,740-13,820'	Shale and Siltstone as above.
13,820-14,090'	As above with more frequent stringers Siltstone, red-brown, moderately firm, slightly calcareous, sandy, occasional grading to thin beds Sandstone, red, very fine grained, sub angular-sub rounded, hard, tite, shaly, silty.
14,090-14,100'	As above with Siltstone, tan-pink, moderately firm.
14,100-14,110'	As above with Shale, light-medium gray, moderately firm, slightly silty to sub waxy, slightly dolomite with dolomite, light-medium gray, moderately firm, dense, slightly sandy.
14,110-14,120'	Shale, Siltstone, red as above. (poor sample)
14,120-14,360'	Dolomite, light-medium gray, moderately firm, dense to slightly micro crystalline, slightly sandy, tite with stringers Shale, light-medium gray, moderately firm, slightly silty to sub waxy, slightly dolomitic.
14,360-14,400'	Dolomite, medium gray, firm, micro crystalline-sucrosic, pyritic with occasional stringers Shale, as above.
14,400-14,500'	Dolomite as above, with dolomite, light-medium gray, moderately firm, micro-very fine crystalline, with stringers Shale, gray-red brown, moderately firm, slightly dolomite.
14,500-14,510'	Dolomite, light gray to light brown, micro crystalline, dense, hard 85% with Shale, gray to dark gray, firm 15% with trace Sandstone, white, fine grained, red, no fluorescence with traces Sandstone, medium brown, fine grained, red, no fluorescence,
14,510-14,520'	Sample as above with Shale, red, dolomite, firm with Shale, brown, firm.

SAMPLE	DESCRIPTION
PAGE 14	Į.

•	
14,520-14,530'	Dolomite, light gray, light brown, micro crystalline, dense, hard 55% with Shale, red, maroon, brown, gray, hard 45%.
14,530-14,600'	Dolomite, light gray, micro crystalline, dense, hard 85% with Shale, as above 15% with trace calcite, white.
14,600-14,610'	Dolomite, gray to gray brown, silty, micro crystalline, hard 85% with Shale, dark red, firm 15%.
14,610-14,630'	Dolomite, light gray to gray to gray brown, micro crystalline, silty, hard 90% with Shale dark red, firm 10%.
14,630-14,650'	Dolomite, light gray to gray, micro crystalline, silty, hard 95% with Shale, dark red, firm 5%.
14,650-14,690'	Dolomite as above 95% with Shale grading to Siltstone, dark red, dolomite 5%.
14,690-14,730'	Dolomite as above 90% with calcite, white 5% with Shale, dark red, 5% .
14,730-14,740'	Dolomite, light gray, micro crystalline, hard 95% with Calcite, white 5% with Shale, dark red, firm.
14,740-14,770'	Dolomite, as above 50% with Dolomite, black, platy 45% with Shale dark red, silty 5%.
14,770-14,800'	Limestone, white to light gray, mottled, micro crystalline, firm 55% with Dolomite, gray to dark gray, firm, platy 40% with Shale, red, silty 5% with trace Clay, Shale pale-green, firm.
14,800-14,840'	Limestone, as above 90% with Dolomite as above 10% with trace calcite, white with trace Shale, red, silty.
14,840-14,860'	Sample as above with trace Shale, black, dolomite, silty, firm.
14,860-14,880'	Limestone, white to light gray, mottle, micro crystalline, firm 70% with dolomite gray to dark gray 30% with trace Shale, red, silty with trace Siltstone, red dolomitic.
14,880-14,900'	Limestone, as above 50% with dolomitic, dark gray to black, silty, firm, 50% with show Siltstone, red, as above.
14,900-14,940'	Dolomite as above 60% with Limestone as above 40% with show Calcite, white.
14,940-14,980'	Dolomite as above 65% with Limestone as above 35% with show Calcite, white, with show Siltstone, dark red, slight dolomitic.
14,980-15,000'	Dolomitic as above 75% with Limestone as above 25% with calcite as above with trace Siltstone as above.

	·
15,000-15,020'	Dolomitic as above 70% with Limestone as above 20% with Siltstone as above 10% with traces calcite, white, with traces Shale, pale-green, firm.
15,020-15,040'	Dolomitic, dark gray to black, silty, firm 55% with Limestone, white to light gray, mottled, micro crystalline, firm 35% with Siltstone, dark red, slight dolomitic with traces calcite, white.
15,040-15,050'	Limestone, as above 45% with Dolomite as above 45% with Silt- stone as above 10% with traces calcite as above.
15,050-15,060'	Dolomite, as above 50% with Limestone, as above 45% with Silt- stone as above 5% with traces calcite as above.
15,060-15,120'	Dolomite, gray to dark gray, slightly silty, hard 55% with Limestone, light gray to gray, mottled in part, micro crystalline, hard 40% with Siltstone, dark red to maroon, hard 5% with traces calcite, creme with traces Shale, pale-green, firm.
15,120-15,130'	Dolomite, gray to dark gray, slightly silty, hard, 50% with Limestone, light gray to gray, mottled in part, micro crystalline, hard 35% with Siltstone, dark red to maroon, hard 5% with Shale dark gray to black, dolomitic, slightly silty 5% with calcite, white to creme 5%.
15,130-15,150'	Dolomite as above 50% with Limestone as above 30% with Marlstone, tan exterior, white to pale green interior, dolomitic, very soft 20%.
15,150-15,160'	Limestone, as above 30% with Dolomite as above 30% with Siltstone red to dark red, firm 25% with Shale, pale-green, sub waxy, slightly dolomitic, firm 10% with Marlstone as above 5% with shows anhydrite.
15,160-15,170'	Shale, brownish red, dolomitic, firm 45% with Siltstone, dark red, slightly dolomitic, firm 30% with Dolomite as above 15% with Shale, pale green, as above 5% with Marlstone, as above 5% with traces anhydrite.
15,170-15,180'	Shale, brownish red, as above 40% with Siltstone, dark red, as above 40% with Marlstone as above 10% with Dolomite as above 5% with Shale, pale-green, as above 5% with show anhydrite.
15,180-15,200'	Shale, brownish red, as above 45% with Siltstone, dark red, as above 45% with Marlstone as above 5% with 5% Dolomite, Shale, pale-green, as above with traces anhydrite.
15,200-15,220'	Shale, brownish red as above 40% with Siltstone, dark red as above 40% with Marlstone as above 15% with Shale, pale-green as above 5% with Shale, black, silty, slightly pyritic, slightly dolomitic with traces anhydrite.

15,220-15,240'	Siltstone, dark red, slightly dolomitic, firm 30% with Marlstone, tan exterior, white interior, dolomitic, very soft 30% with Shale brownish-red, dolomitic, firm, 20% with Shale, pale-green, sub waxy, slightly dolomitic, firm 20% with show anhydrite.
15,240-15,260'	Marlstone, as above 50% with Shale, brownish-red as above 15% with Siltstone, dark red as above 15% with Shale, pale-green as above 10% with Shale, gray to gray-black to black, firm 10% with show anhydrite.
15,260-15,290'	Marlstone, as above 70% with Shale gray to greenish-black, very silty, hard 20% with Shale and Siltstone, red as above 20% with show anhydrite.
15,290-15,320'	Marlstone, tan exterior, white to pale green interior, dolomitic 35% with Shale, brownish-red, dolomitic, silty, firm 30% with Siltstone, dark red, slightly dolomitic, firm 30% with Shale, gray to gray-green, slightly dolomitic, firm 5% with traces anhydrite.
15,320-15,370'	Siltstone, dark red to maroon, firm, sandy, slightly dolomitic 50% with Marlstone as above 25% with Shale, pale-green, sub waxy, slightly silty 20% with Shale, gray, slightly silty, slightly dolomitic, firm 5% with traces anhydrite.
15,370-15,390'	Siltstone, dark red, slightly dolomitic 40% with Siltstone, reddish-brown, very sandy 30% with Marlstone as above 15% with Shale, pale-green, as above 15% with traces Shale, gray as above.
15,390-15,400'	Siltstone, bright red as above 50% with Siltstone, dark red as above 40% with Marlstone as above 10% with traces Shale, palegreen, as above with traces anhydrite.
15,400-15,420'	Siltstone, brownish red, as above 50% with Siltstone, dark red, 45% with Marlstone as above 5% with traces Shale, pale-green as above.
15,420-15,440'	Siltstone, dark red as above 55% with Siltstone, brownish-red, as above 45% with traces Marlstone with traces Shale, pale-green, as above.
15,440-15,480'	Siltstone, brownish-red as above 50% with Siltstone, dark red as above 45% with Shale, pale-green as above 5% with traces anhydrite.
15,480-15,520'	Siltstone, brownish-red, as above 50% with Siltstone, dark red as above 45% with Shale, gray, very slight dolomitic, silty, moderately firm 5% with show Shale, pale-green as above with traces anhydrite with traces Marlstone.

SAMPLE	DESCRIPTION
PAGE 17	

,	
15,520-15,530'	Siltstone, brownish-red, sandy, dolomitic, firm 45% with Siltstone, dark red, slightly sandy, slightly dolomitic, firm 40% with Shale gray, very slight dolomitic, silty, moderately firm, 15% with traces of Shale, pale-green; anhydrite; Marlstone.
15,530-15,550'	Siltstone, dark red, as above 50% with Siltstone, brownish-red as above 40% with Siltstone, light gray, dolomitic 10%.
15,550-15,560'	Siltstone, red as above 80% with Dolomite, gray to dark gray, micro crystalline, silty, slightly translucent, firm 20%.
15,560-15,570'	Dolomite, gray to dark gray, micro crystalline, silty, slightly translucent, firm 40% with Dolomite, light gray, micro crystalline, slightly limey, firm 40% with Siltstone, red as above 20% with show of anhydrite and Marlstone.
15,570-15,580'	Siltstone, red as above 50% with Dolomite, light gray as above 25% with Dolomite, dark gray, as above 25% with traces anhydrite.
15,580-15,590'	Dolomite, light to dark gray, micro crystalline, slightly silty, translucent, firm 75% with Siltstone, red as above 25% with traces anhydrite.
15,590-15,600'	Marlstone, tan to light gray, dolomitic, soft 65% with Dolomite, light to dark gray as above 25% with Siltstone red as above 10% with traces anhydrite.
15,600-15,620'	Dolomite, light and dark gray, as above 80% with Siltstone, red as above 20% with traces white calcite with traces anhydrite.
15,620-15,650'	Dolomite, light gray to gray to black, micro crystalline, slightly silty, slightly translucent 95% with 5% Siltstone, red as above 5% with traces anhydrite and calcite, white.
15,650-15,660'	Dolomite, gray, micro crystalline, hard, slightly silty, with traces red Siltstones, anhydrite and Marlstone.
15,660-15,790'	Dolomite, gray to dark gray, micro crystalline, hard, slightly silty, 60% with Dolomite Limestone, light gray to gray white, mottled, slight salt and pepper, moderately soft 40% with traces red Siltstone, anhydrite, calcite, white.
15,790-15,810'	Dolomite, gray to dark gray, micro crystalline, hard, limey, slightly silty 50% with interbedded chert, milky translucent, salt and pepper, 10% with Limestone, light gray to gray white, mottled, slightly salt and pepper, moderately soft 40% with traces of red Siltstone, Marlstone, and calcite, white.
15,810-15,820'	Dolomitic Limestone, gray, micro crystalline, hard, slightly silty 70% with interbedded chert as above 10% with Limestone, light gray to gray white, mottled, slight salt and pepper, moderately soft 20% with traces red Siltstone and calcite, white.

•	',	•
SAMPLE DESCRIPTION PAGE 18		
15,820-15,830'	Dolomitic Limestone, as above 45% as above 10% with Limestone, white moderately soft 45%.	
15,830-15,840'	Dolomitic Limestone as above 50% w above 10% with Limestone as above	
15,841'	Samples at 20 minute intervals	
O minutes- 80 minutes	Dolomitic Limestone as above 40% w with Limestone as above 50% with s	
80 minutes- 100 minutes	Limestone as above 60% with traces Limestone as above 30% with chert and red Siltstone.	
100 minutes- 120 minutes	Dolomitic Limestone as above 50% w traces calcite and red Siltstone.	ith Limestone as above 50% with
15,840-15,850'	No sample.	
15,850-15,870'	Cement shoe and LCM.	
15,870-15,890'	Shale, varicolored, red, gray, gre sub waxy, with abundant quartz gra fracture sand) Very poor sample.	
15,890-15,900'	As above with Limestone, light graline, moderately firm, argillaceou calcite.	y-gray, mottled, micro crystal- s, slightly anhydritic, trace
15,900-15,950'	As above with stringers Dolomite, crystalline, stringers Shale, red firm, sub-waxy and Shale, gray, su	to red brown, moderately
15,950-16,020'	As above predominately Dolomite as gray, moderately firm, sub waxy.	above with stringers Shale,
16,020-16,090'	Limestone, light gray-tan, moderat slightly mottled with inclusion and and seams black material. No fluo	seams calcite. Some inclusion

16,090-16,150'

16,150-16,200'

pyrite.

crystalline, shaly.

Limestone and Dolomite as above with Shale, gray-dark gray, firm, slightly dolomitic, slightly pyritic with some finely disseminated

Limestone, gray, micro crystalline, moderately firm, slightly calcitic with lentils Dolomite, dark gray, firm, dense to micro

16,200-16,280'	Limestone as above with Shale, gray-green to slightly olive green, firm, slightly dolomitic, trace Shale, dark gray, slightly dolomitic, trace Dolomite as above.
16,280-16,350'	Shale, brown to slightly maroon-brown, moderately firm, slightly dolomitic, occasionally slight pyritic.
16,350-16,370'	Very poor samples.
16,370-16,400'	Dolomite, gray, micro crystalline, limy, moderately firm, with stringers and lentils Limestone, light gray, moderately firm, micro crystalline, argillaceous.
16,400-16,420'	Very poor samples.
16,420-16,490'	Limestone, light-medium gray, micro-very fine crystalline, moderately firm, silty, slightly argillaceous with some lentils Dolomite as above.
16,490-16,520'	As above with Shale, gray-dark gray, firm, slightly dolomitic, and Shale, slightly gray-green, sub waxy.
16,520-16,605'	Dolomite, light gray-gray, moderately firm-hard, occasionally slightly glassy, micro crystalline, trace Shale, gray, moderately firm, slightly dolomitic.
16,605-16,780'	Shale, red to red brown, some red orange, moderately firm, slightly calcite, sub waxy to silty with stringers Siltstone, brown to red brown, moderately firm, moderately calc.
16,780-16,820'	As above with increasing in Siltstone percentage.
16,820-16,900'	As above with Siltstone, tan, moderately soft, shaly, marly, occasionally slightly sandy.
16,900-16,970'	Siltstone, red brown to brown, moderately firm, moderately calc., occasionally very sandy, grading to stringers of very silty Sandstone, very fine grained, sub angular-sub rounded, Shale, red to red brown, moderately firm, sub waxy to slightly silty, moderately calc.
16,970-17,150'	Shale as above with stringers Siltstone as above, trace Shale, pale green, moderately firm, sub waxy, trace calcite.
17,150-17,200'	Siltstone, red-brown, some tan, moderately firm, moderately calc., very sandy in streaks, some streaks and inclusion calcite with interbeds Shale as above.
17,200-17,325'	Shale as above with stringers Siltstone as above.

CPG No. 1265

CORES

Core No. 1

11,606'-11,630'

Barrel Jammed

Cut 24'

Recovered 24'

11,606-11,607':

Sandstone, white, very fine-fine grained, occasionally medium grained, sub angular-sub rounded, rounded, nonoccasional pink grains. Scattered seams black asphaltic residue. Scattered pinpoint white fluorescence.

No visible stain or odor. Vertical fractures.

11,607-11,610':

Sandstone, as above. No vertical fractures.

11,610-11,611.5':

Sandstone as above. Slightly more fine-medium grained.

11,611.5-11,615.5':

Sandstone, white-buff, very fine-fine grained, occasionally medium grained, sub angular-sub rounded-rounded, firm, tite. Vertical fractures with black asphaltic residue on fractures. No visible stain or odor. Scattered pinpoint

white fluorescence.

11,615.5-11,621':

Sandstone, as above. No vertical fractures. Slight

increase in porosity.

11,621-11,622':

Sandstone as above. Scattered black asphaltic residue,

firm, tite.

11,622-11,630':

Sandstone, buff-white; buff Sandstone predominately finemedium grained; white, Sandstone, predominately very fine grained in apparent bedding (22°-23°), sub angular-sub rounded-rounded, firm, tite. Scattered pinpoint white

fluorescence. No visible stain or odor.

NOTE:

The described pinpoint white fluorescence was noted throughout the entire core. In some instances the pinpoints were dense enough to form a cluster of

fluorescence.

DRILL STEM TESTS

Drill Stem Test No. 1

10,636'-10,905'

(Twin Creek Formation)

Packers at 10,567 and 10,636'

5/8" Bottom Hole Choke 1/4" Surface Choke

Preflow 30 minutes:

Tool opened with very weak blow, increasing to weak.

Shut In 60 minutes

Open 120 minutes:

Tool reopened with weak blow, continued steady throughout open.

Shut In 180 minutes

Recovered:

1131' Drilling mud. Rm 0.1 at 64°

190' Water cut mud

Sample Chamber Recovery: 2400 cc muddy water

Rw 0.08 at 62°

5 psi

	<u>Inside</u>	<u>Outside</u>
IHP IFP	5608 psi 114-369 psi	5620 psi 75-406 psi
ISIP	4130 psi	4151 psi
FFP FSIP	424-588 psi 2852 psi	442-663 psi 2884 psi
FHP BHT	5608 psi 208°	5620 psi

Pit Mud:

Rm 0.15 at 54° Rmf 0.06 at 60°

Drill Stem Test No. 2

11,480'-11,521'

(Nugget Formation)

Packers at 11,477 and 11,480'

5/8" Bottom Hole Choke

1/4" Surface Choke

Preflow 30 minutes:

Tool opened with very weak blow, continued steady.

Shut In 60 minutes

Open Open

30 minutes:

Tool reopened with very weak blow.

Shut In 60 minutes

Recovered:

313' water cut mud

Rm 0.4 at 68° Rmf 0.15 at 70°

Sample Chamber Recovery:

1840 cc water

Rw 0.13 at 70°

2 psi

	<u>Inside</u>	<u>Outside</u>
IHP	5506 psi	5503 psi
IFP	26-76 psi	50-87 psi
ISIP	4722 psi	4632 psi
FFP	101-138 psi	112-162 psi
FSIP	4659 psi	4644 psi
FPH	5531 psi	5503 psi
BHT	238°	•

Pit Mud:

Rmf 0.15 at 68°

Drill Stem Test No. 3

11,475'-11,630'

(Nugget Formation)

Misrun - Packers would not seal.

Drill Stem Test No. 4

11,498'-11,630'

(Nugget Foramtion)

Misrun - Packers would not seal.

Drill Stem Test No. 5

10,631'-11,630'

(Nugget Formation)

5/8" Bottom Hole Choke

1/4" Surface Choke

Preflow 15 minutes:

Tool opened with fair blow. Increased to bottom of

bucket in 3 minutes.

Shut In 180 minutes

Open 150 minutes:

Tool reopened with moderate blow. Increased to bottom of bucket in 3 minutes. In 1 1/2 hours pressure against surface Blow decreased to very weak at end of choke was 7 1/4 psi.

2 1/2 hours. NGTS

Shut In 120 minutes

Recovered:

8140' Drilling mud (Bottom slightly water cut)

1120' Blackish Sulphur Water

Sample Chamber Recovery: 2400 cc Black Sulphur Water

Rw 0.25 at 63° 21,500 ppm Chlorides

60 psi

	<u>Inside</u>	<u>Outside</u>
IHP	5030 psi	5120 psi
IFP	436-1108 psi	416-1198 psi
ISIP	4582 psi	4661 psi
FFP	1257-4395 psi	1334-4475 psi
FSIP	4619 psi	4698 psi
FHP	5042 psi	5132 psi
BHT	224° .	·

Pit Mud:

Rm 0.12 at 58°, Rmf 0.10 at 56°, 53.000 ppm Chlorides

April 4, 1979

MEMO TO FILE

Re: MICHIGAN-WISCONSIN PIPELINE
Well No. Weber Coal Co. 13-3
Sec. 3, T. 2N, R. 5E
Summit County, Utah

It is the intention of Michigan-Wisconsin Pipeline to deepen this already existing drilling hole from an approximate depth of 17,000' to 21,000', or an advisable test of the Madison Formation.

Prior to putting a rotary rig on the well, the operator moved a completion rig of the Pool Company from south western Louisiana to this location. They had continued on drilling out the cement plugs and cleaning the casing out to the depth at which it had previously been run (11,051'). However, due to uncertainty of rig course and instruction from the operator, the expenditure to date has been in excess of \$260,000. Forty days have been wasted, the only productive thing being that two of the cement plugs have been drilled out.

They plan to move in a large rotary rig to complete the job, and are going to utilize the small rig until it arrives.

MICHAEL T. MINDER GEOLOGICAL ENGINEER

MTM/ Tw

.

Form DOGC4-

STATE OF UTAH

DEPARTMENT OF NATURAL RESOURCES `- \ DIVISION OF OIL & GAS CONSERVATION

State Lease No. N/A
Federal Lease No. N/A
Indian Lease No. N/A
Fee & Pat. Weber Coal

1588 WEST NORTH TEMPLE SALT LAKE CITY, UTAH \$4116 533-5771

REPORT OF OPERATIONS AND WELL STATUS REPORT

7	Ene Den	rgy (ver	co 8	0202	, Ste. 25		Title Production Coordinator				
end of X	Twp.	Range	Well No.	Days Produced	Barrels of Oil	Gravity	Cu. Ft. of Gas (In thousands)	Gallons of Gasoline Recovered	Barmila of Woter (If none, so state)	REMARKS (If drilling, depth; if shut down, cause; date and poult of test for gasoline 'soment of gas	
. 3	2N	5E	13-3	0	0	, 0	0	. 0	0	Drlg (WO) 9958'	
SW4	2N	DE.	13-3	U	U			. 0	į		
•	,			. ‡	:					· .	
	•	•			•	•					
							•			God Carlotte San	
									·	THE THE PARTY OF T	
Sol Fla	(MCF) Id Ired/Vei and On/C	nted _	() () () ()		•		On he Produ	and at begin uced during during monto oidably lost	ning of mont month th	reported in Barrels) th 0 0 0 0 0	

DRILLING/PRODUCING WELLS: This report must be filed on or before the stateenth day of the succeeding month following production for each well. Where a well is temporarily shut-in, a negative report must be filed. THIS REPORT MUST BE FILED

1 un . De 124 .

STATE OF UTAH

DIVISION OF OIL & GAS CONSERVATION

State Lease No. N/A
Federal Lease No. N/A
Indian Lease No. N/A
Fee & Pat. Weber Coal

1888 WEST NORTH TEMPLE BALT LAKE CITY, UTAH 94116 833-5771

REPORT OF OPERATIONS AND WELL STATUS REPORT

· STA	TE	U	tah.		co	UNTY	Summit	FIE	LD/LEASE_	Wildcat		
The	frilowi M	ing is a	corr	ect repor	t of operation	s and p	roduction (inclu	ding drillin	g and produc	cing wells) for the month of:		
717-17th St. Signed									Michigan Wisconsin P/L Co.			
Pho	Denver, CO 80202 Phone No. 303-571-1110			80202 -1110			Title	Produc	tion Coor	dinator		
x of X	Twp.	Range	Well No.		Barrels of Oil	Gravity	Cu. Ft. of Gas (in thousands)	Gallons of Gasoline Recovered	Barnila of Water (H none, so state)	REMARKS (If drilling, depth; if shut down, cause; date and jesuit of test for gasoline 'soment of gas)		
ý.					:	,		į				
Sec. 3 IW SW¼	2N	5E ,	13-3	0	0	0	0	0	6 0	Drlg (WO) 11,199'		
					÷			-				
										· · · · · · · · · · · · · · · · · · ·		
•	, ,	•		·				ı		A SA CANA		
										TITE TO THE TOTAL OF THE PARTY		
		·										
Sol Fla	(MCF) id ired/Ven ad On/O		0 0				On ha Produ Sold d	nd at beging ced during r luring mont idably lost	ning of month month h	sported in Barrels) 0 0 0 0 0		

DRILLING/PRODUCING WELLS: This report must be filed on or before the stateenth day of the succeeding month following production for each well. Where a wrill is temporarily shut-in, a negative report must be filed. THIS REPORT MUST BE FILED

STATE OF UTAH

DIVISION OF OIL & GAS CONSERVATION

State Lease No. N/A
Federal Lease No. N/A
Indian Lease No. N/A
Fee & Pat Weber Coal

1888 WEST NORTH TEMPLE SALT LAKE CITY, UTAH \$4116 833-5771

REPORT OF OPERATIONS AND WELL STATUS REPORT

7.	De	nver,	CO	500 Ene 8020 2 110	ergy Ctr I		Signed	Product	gan Wisco	insin P/L Co.
ad X	Twp.	Range	Well No.	Days Produced	Barrels of Oil	Gravity	Cu. Ft. of Gas (In thousands)	Gallons of Gasoline Recovered	Barnils of Water (If none, so state)	. REMARKS (If drilling, depth; if shut down, cause date and jesuit of test for pasoline soment of gas)
3 SW ¹ 4	2N	5E	3-3	0	0	0	0	0	, O	PBTD: 11,095' RURT
-					:			-		
										COLUMN TO THE PARTY OF THE PART
	•								·	
Solo Flan	ed/Ver	nted	•	0 0			On ha Produ Sold c Unavo		ning of month monthh	reported in Barrels) h. 0 0 0 0

DRILLING/PRODUCING WELLS: This report must be filed on or before the stateanth day of the succeeding month following production for each well. Where a well is temporarily shut-in, a negative report must be filed. THIS REPORT MUST BE FILED

reva DOSE4

STATE OF UTAH

DEPARTMENT OF NATURAL RESOURCES ~ DIVISION OF OIL & GAS CONSERVATION

N/A State Lease No._ N/A Federal Lease No. Indian Lease No._ For & Por Weber Coal

1688 WEST NORTH TEMPLE BALT LAKE CITY, UTAH \$4116 833-6771

REPORT OF OPERATIONS AND WELL STATUS REPORT

Acors Address Ste 2500 Energy Ctr I 717 17th St. Denver. CO 80202								Company Michigan Wisconsin P/L Co. Signed Production Coordinator					
Phon	e No	303-	571-	1110									
end d X	Twp.	Range	Well No.	Days Produced	Barrels of Oli	Gravity	Cu. Ft. of Gas (In thousands)	Gallons of Gasoline Recovered	Barrils of Water (If none, so state)	REMARKS (If drilling, depth; if shut down, cause date and peakt of test for gasolina sontent of gas)			
		·			: ·	·							
:. 3 SW ¹ 4	2N	SF '	13-3	0	0	0	. 0	0	0	Drlg @15,675'			
	211			Ü	:	Ü	, and the second						
•													
				*	·					•			
	, ,	•	·										
				•						TO TO THE TOTAL OF THE PARTY OF			
	·	·											
GAS:	(MCF)					1	011 or 0	ONDENSA	TE: (Tabus	eported in Barrels)			

DRILLING/PRODUCING WELLS: This report must be filed on or before the stateenth day of the succeeding month following production for each well. Where a well is temporarily shut-in, a negative report must be filled. THIS REPORT MUST BE FILED

STATE OF UTAH

PEPARTMENT OF NATURAL RESOURCES -DIVISION OF OIL & GAS CONSERVATION

State Lease No. N/A Federal Lease No.___ N/A Indian Lease No. Fee & Par Weber Coal

1888 WEST NORTH TEMPLE SALT LAKE CITY, UTAH 94116 833-5771

REPORT OF OPERATIONS AND WELL STATUS REPORT

	Jun	e			of operation 1	9 /9	···	Michia		cing wells) for the month of:
74. 74.	717	ijth er, C	St.		ici gy oui		Compo	Produc	1.h. My	rdinator
Ph	one No.						Title			:
and X	Twp.	Range	Well No.	Days Produced	Barrels of ON	Gravity	Cu. Ft. of Gas (in thousands)	Gallons of Gasoline Recovered	Earpile of Water (If none, so state)	. REMARKS (If drilling, depth; If shut down, cause; date and jesuit of test for pasoline soment of gas)
:								:		
Sec. 3 NW SW¼	2N	5#	13-3	0	0	0	0 -	. 0	0	Drlg @16,268'
							, `			•
		'			·		•			
• .					:					
			·					,		1
		•			•					Sta Control
•					·					The same of the sa
										Tall milde
		·							,	
										· · · · · · · · · · · · · · · · · · ·
GAS	: (MCF)		<u>-</u>	0	,	·				reported in Barrels)
S	oldlared/Ver			0			On ha		ning of mont	0 0
	sed On/O			0			Sold	during mont	ah	0

STATE OF UTAH

PEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL & GAS CONSERVATION

State Lease No. N/A Federal Lease No. N/A Indian Lease No. N/A For & Poweber Coal

1888 WEST NORTH TEMPLE SALT LAKE CITY, UTAH \$4116 833-6771

REPORT OF OPERATIONS AND WELL STATUS REPORT

7	rs Add	17 17 Denver	7th S	St. 0 80202	ergy Ctr I		Signed	Company Michigan Wisconsin P/L Co. Signed			
	Twp.	Range	Well No.	Days Produced	Barrels of Oil	Gravity	Cu. Ft. of Gas (in thousands)	Gallons of Gasoline Recovered	Barmils of Water (H none, so state)	REMARKS (If drilling, depth; if shut down, cause date and least of test for pascline someont of gas)	
ec. 3 W SW4	2N	5E	13-3	0	0	0	0	o . •	, O	Drlg @17,954'	
٠.		•			÷	·					
***										STATE OF THE STATE	
		-									
;	·	·									
			0	0			On he	CONDENSA and at begins aced during a during mont bidably lost Reasons and at end of	ning of monti month h	eported in Barrels) 0 0 0	

DRILLING/PRODUCING WELLS: This report must be filed on or before the stateenth day of the succeeding month following production for each well. Where a well is temporarily shut-in, a negative report must be filed. THIS REPORT MUST BE FILED

STATE OLI CAH DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL CAS AND MINING

SUBMIT IN DUP
(See other instru
on reverse side,

5. LEASE DESIGNATION AND SERIAL NO. DIVISION OF OIL, GAS, AND MINING 6. IF INDIAN, ALLOTTEE OR TRIBE NAME WELL COMPLETION OR RECOMPLETION REPORT AND LOG* 1a. TYPE OF WELL: WELL 7. UNIT AGREEMENT NAME Other Temp. Abandoned L TYPE OF COMPLETION: DEED. PLUG BACK DIFF. RESVR. WELL S. FARM OR LEASE NAME 2. NAME OF OPERATOR Michigan Wisconsin Pipeline Company Weber Coal Co. 9. WELL NO. (American Natural Gas Production Co.) #T-13 /3-3 10. FIELD AND POOL, OR WILDCAT 717 - 17th Street, Suite 2500, Denver, Colorado 80202 4. LOCATION OF WELL (Report location clearly and in accordance with any State requirements)* Wildcat
11. SEC., T., R., M., OR BLOCK AND SURVEY 500' FWL & 1400' FSL (NW/4, SW/4) At top prod. interval reported below Section 3, T2N-R5E At total depth DATE ISSUED 13. STATE 14. PERMIT NO. Summit Utah 5/17/79 43-043-30024 15. DATE SPUDDED 16. DATE T.D. REACHED 17. DATE COMPL. (Ready to prod.) 19. ELEV. CASINGHEAD 18. ELEVATIONS (DF, RKB, RT, GR, ETC.)* 9/3/79 Re-enter 2/21/79 6002' KB 5981' 5981' GR 20. TOTAL DEPTH. MD & TVD 21. PLUG, BACK T.D., MD & TVD 22. IF MULTIPLE COMPL., 23. INTERVALS ROTARY TOOLS CABLE TOOLS HOW MANY DRILLED BY A11 Surface 25. WAS DIRECTIONAL SURVEY MADS 24. PRODUCING INTERVAL(S), OF THIS COMPLETION-TOP, BOTTOM, NAME (MD AND TVD)* Yes None 26. TYPE ELECTRIC AND OTHER LOGS BUN TDT-CNL, Directiona[¶] 27. WAS WELL CORED <u>Induction-GR</u> No CBL-VDL-GR Casing Caliper CASING RECORD (Report all strings set in well) 28. CASING SIZE WEIGHT, LB./FT. DEPTH SET (MD) CEMENTING RECORD HOLE SIZE AMOUNT PULLED 17-1/2" None 2615 sx. to surface 13-3/8" 61 3039 12-1/4" 40, 43.5 900 sx. None 9<u>-5/8 & 9-7/</u>8 10663 47<u>, 53.5</u> & 62.8 29. LINER RECORD 30. TUBING RECORD BOTTOM (MD) SIZE TOP (MD) SACKS CEMENTS SCREEN (MD) SIZE DEPTH SET (MD) PACKER SET (MD) 7-5/8" 15676 643 None 9958 31. PERFORATION RECORD (Interval, size and number) ACID. SHOT, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) AMOUNT AND KIND OF MATERIAL USED 11,624-11,636' 6.5 gm. 2 holes/foot. 11,624-636' MSR - 100 2500 ga1 15% 10,122-10,126 10,122'-10,244' 8000 gal. 15% MSR - 100 10,169-10,175 22 gm. 4 holes/foot. 10,226-10,244 Also see attached 33.* PRODUCTION DATE FIRST PRODUCTION PRODUCTION METHOD (Flowing, gas lift, pumping-size and type of pump) WELL STATUS (Producing or shut-in) Temporarily Abandoned DATE OF TEST HOURS TESTED CHOKE SIZE PROD'N. FOR OIL-BÉL GAS-MCF. GAS-OIL BATIO WATER-BRL. TEST PERIOD CALCULATED 24-HOUR RATE PLOW. TUBING PRESS. -BRL GAS-MCF. WATER-BBL. OIL GRAVITY-API (CORR.) 34. DISPOSITION OF GAS (Sold, used for fuel, vented, etc.) TEST WITNESSED BY 35. LIST OF ATTACHMENTS Previously sent.

36. I hereby certify that the foregoing and attached information is complete and correct as determined from all available records auest TITLE Manager Production & Engineer 10/19/79 SIGNED _

INSTRUCTIONS

or both, pursuant to applicable Rederal and/or State laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from, the local Rederal and/or State office. See instructions on items 22 and 24, and 38, below regarding separate reports for separate completions. See instructions on items 22 and 24, and 38, below regarding separate reports for separate completions. If you see the time this summary record is submitted, copies of all currently available logs (drillers, geologists, sample and core analysis, all types electric, etc.), formation and directional surveys, should be attached hereto, to the extent required by applicable Federal and/or State laws and regulations. All attachments General: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases to either a Federal agency or a State agency.

should be listed on this form, see item 35.

or Federal office for specific instructions.

Hem 18: Indicate which elevation is used as reference (where not otherwise shown) for depth measurements given in other spaces on this form and in any attachments.

Hems 22 and 24: If this well is completed for separate production from more interval zone (multiple completion), so state in item 22, and in item 24 show the producing interval. So intervals, toyis, bottomics and name(s) (if any) for only the interval reported in Item 33. Submit a separate report (page) on this form, adequately identified, for each additional interval to be separately produced, showing the additional data pertinent to such interval.

Hem 29: "Sacks Cement": Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool.

87. SUMMARY OF POROUS ZONES SHOW ALL IMPORTANT ZONES OBETH INTERVAL TESTED, CUST	OUS ZONES: TANT ZONES OF POI TESTED, CUSHION	MARY OF POROUS ZONES: SHOW ALL IMPORTANT ZONES OF POROSITY AND CONTENTS THEREOF; DEPTH INTERVAL TESTED, CUSHION USED, TIME TOOL OPEN, PLOWING	18 THEREOF; CORED INTERVALS; AND ALL DRILL-STEM TESTS, INCLUDING BM, FLOWING AND SHUT-IN PRESSURES, AND RECOVERIES	38. GROLOG	GEOLOGIC MARKERS	
FOR MATION	TOF	BOTTOM	DESCRIPTION, CONTENTS, ETC.	*	TOP	
					MRAS. DEPTH	TRUB VART, DEPTE
				Kelvin	Surface	
-	,			Morrison	18697	
				Stump	8000	
				Preuss	\$070	
				Salt	9058	
	•			Twin Creek	9440	
				Nugget	11,464'	
				Chinle	12,676'	
-				Ankareh	13,165	
				Thaynes	14,088	
				Woodside	15,135	
				Base Thaynes	15,540'	
				Base Ankareh	16,586	-
				Base Chinle	17,530	
				Thrust Fault		
				Cretaceous	17,935	
				Total Depth	17,954	
7		,		*	-	

1. Cleaned out existing CIBP's in 7-5/8" liner and cement squeezed the following perforations:

10,704'-10,740' 10,945'-10,992' 11,252'-11,266' 14,648'-14,672'

- 2. Cleaned out open hole to 16,600'.
- 3. Plugged back open hole 16,098' to 15,860' with cement.
- 4. Established new hole and drilled 6-1/2" hole from 15,860' to 17,954'.
- 5. Set 200 sacks cement plug from 17,708' to 17,042'. Fish left in hole 17,715' to 17,890' consisting of 4 4-3/4" D.C.'s, 1 IBS, 1 Monel DC, 1 3 pt. reamer, 1 short DC, 1 6 pt. reamer, & bit (178' in length). Also CIBP with setting tool & CCL at 17,042'.
- 6. CIBP at 11,715'. CIBP at 10,320'. CIBP at 9,982' capped w/3 sx. cement. 10 sx. cement plug in surface of 9-5/8" casing with bolted steel plate.
- 7. Released rig 10/9/79.

STATE OF UTAH

__ JEPARTMENT OF NATURAL RESOURCES ____ DIVISION OF OIL & GAS CONSERVATION

State Lease No. N/A
Federal Lease No. N/A
Indian Lease No. N/A
Fee & Pat. Weber Coal

1888 WEST NORTH TEMPLE BALT LAKE CITY, UTAH 93116 833-8771

REPORT OF OPERATIONS AND WELL STATUS REPORT

, shire				Box 2	2267 80202		Signed			onsin Pipe Line
Phone	No.	(3	03)	571 – 111	0			arerial	and Produ	ction Analyst
d t	Twp.	Range	Well No.		Barrels of OI	Gravity	Cu. Ft. of Gas (In thousands)	Galions of Gasoline Recovered	Barryls of Water (If none, so state)	REMARKS (If drilling, depth; if shut downs date and result of test for pas someont of geal)
c.3 W½	2N	5E	13-	-0-	-0-	, 	-0-	-0-	~ 0-	Temporarily abando
,			3		14.					16117/
·										NOV 8 1979
		·			•					DIVISION OF OIL
				7				·		TITIES
										· · · · · · · · · · · · · · · · · · ·
								/		
					· · · · · · · · · · · · · · · · · · ·					
					:	·				
-	ong e o	#/								
SAS: (Sold Flare							On ha	ind at begini	ning of monti	eported in Barrels) 1
Usso	5 On/0	off Less	· • •	-0-				oidably lost	•	-0 - -0- -0-

DRILLING/PRODUCING WELLS: This report must be filed on or before the stateenth day of the succeeding month following parties for each well. Where a well it temperatily shut-in, a negative report must be filed. THIS REPORT MUST BE FILED

831 Belinda Circle RIVERTON Wyoming 82501

January 17 1980

Mr Mike Minder State of Utah Division of Cil. Gas and Minerals 1588 West North Temple SALT LAKE CITY Utah 84116

Dear Sir

With reference to our telephone conversation of January 10, 1980, the Weber This location is now completely covered with snow and the Coal 13-3 Location. ground frozen very hard. Therefore, it would be very difficult to do any further clean-up work until Spring. I have vacuumed the water our of the cellar and feel that the problem there has been corrected. I also feel that it would be better to wait until late Spring or early Summer to do any work on the Reserve Pit.

Yours faithfully

c.c. Mr George Goward, Mich Wish

JAN 21 1980

DIVISION OF OIL, GAS & MINING

HEHORANGUN

TO: File

FRON: Michael T. Minder Geological Engineer Division of Oil, Gas and Hining

Re: Oil Spill
Michigan-Wisconsis Pipeline
Well No. Weber Coal #13-3
Sec. 3, T. 2Na, R. 5E.,
Summit Countym Utah

On Monday, March 10, 1980, Mr. Don Neet of Michigan-Wisconsin Pipeline notified this office that the reserve pit on the above referenced well overflowed and that he did not know the extent of the damages but would be in Salt Lake City on the 11th to visit the site.

On Tuesday, March 11, 1980, I visited the site of the spill and walked over a portion of it with Mr. Neet, to assess damages. The spring melt together with a recent rain storm filled the reserve pit, over-flowing the embankment which spilled the contents down the side of a rather steep hill-isde with a portion of the flow diverted that a lower pond midway to the toe of the slope. The greater portion appeared No have bypassed the pond, flowing down the hill across a road and into another pond and from it, into an irrigation ditch. Some oily residue was left marking the path of the flow; however, much of the oil was trapped in the pond adjacent to the irrigation ditch; the remainder went along and into the irrigation ditch itself.

Water samples were taken from both the irrigation ditch and the pond adjacent to it. On Wednesday, Mary Ann Wright (Division Biologist) and I visited the site again, going over much of the area to essess potential damage. Photographs and slides were taken on the 11th and additional photos were taken on the 12th.

Mr. Neet has contacted the property owners, Mr. K. Blonquist and Mr. L. Wright, and made arrangements for emending damages with both parties. He is working with a local contractor and is in the process of cleaning up the spill. The pond will be burned and the remaining liquid and residue trucked to another pit and disposed of. The liquid and polluted soil will be removed from the irrigation system and disposed of in a like manner.

MEMORANDUM Oil Spill - Michigan Wiseonsin Well No. Weber Coal #13-3 March 18, 1980

When work is conpleted, Mr. Neet will notify the Division and the site will be checked at that time and again later in the year to determine successfulness of clean-up operations.

Sincerthere is gas leaking from the well head, the plugging is not adequate and will require that the surface casing be drilled out and plugged properly.

cc: UTAH State Division of Health Environmental Protection Agency Michigan-Wisconsia Pipeline Mr. Donald Neet Michael T. Minder

western union

Telegram

SLB059(1824)(4-0263895068)PD 03/08/80 1824

ICS IPMMTZZ CSP MICHIGON - WISCONSIN (PAR)

3078561697 TDMT RIVERTON WY 74 03-08 0624P EST

PMS MIKE MINDER RPT DLY MGM, DLR ASAP MONDAY MORNING, DLR

STATE OF UTAH DIVISION OF OIL GAS AND MINERALS 1588 WEST NORTH TEMPLE

SALT LAKE CITY UT 84116

THIS IS TO ABVISE YOU THAT DUE TO HEAVY RAINS AND MELTING SNOW ON THE WEBER CORN. 13-3 LOCATION PIT HAS OVERFLOWED. A GREAT DEAL OF THE MATERIAL WAS RETAINED IN THE LOWER PIT. CONTRACTOR IS NOW IN PROCESS OF CLEANING UP THE SPILL. I WILL BE IN SALT LAKE ON MONDAY HARCH 10. WILL CALL FOR AN APPOINTMENT TO DISCUSS THIS MATTER, ATTEMPTED TO CONTACT YOU FRIDAY EVENING AND SATURDAY HORNING BY TELEPHONE

DON MEET

831 BELINDA CIRCLE RIVERTON WY 82501

NNNN

MEMORANDUM

TO: File

FROM: Michael T. Minder M.S.M.
Geological Engineer
Division of Oil, Gas
and Mining

Re: Oil Spill
Michigan-Wisconsis Pipeline
Well No. Weber Coal #13-3
Sec. 3, T. 2No, R. 5E.,
Summit County; Utah

On Monday, March 10, 1980, Mr. Don Neet of Michigan-Wisconsin Pipeline notified this office that the reserve pit on the above referenced well overflowed and that he did not know the extent of the damages but would be in Salt Lake City on the 11th to visit the site.

On Tuesday, March 11, 1980, I visited the site of the spill and walked over a portion of it with Mr. Neet, to assess damages. The spring melt together with a recent rain storm filled the reserve pit, over-flowing the embankment which spilled the contents down the side of a rather steep hillisde with a portion of the flow diverted into a lower pond midway to the toe of the slope. The greater portion appeared to have bypassed the pond, flowing down the hill across a road and into another pond and from it, into an irrigation ditch. Some oily residue was left marking the path of the flow; however, much of the oil was trapped in the pond adjacent to the irrigation ditch; the remainder went along and into the irrigation ditch itself.

Water samples were taken from both the irrigation ditch and the pond adjacent to it. On Wednesday, Mary Ann Wright (Division Biologist) and I visited the site again, going over much of the area to assess potential damage. Photographs and slides were taken on the 11th and additional photos were taken on the 12th.

Mr. Neet has contacted the property owners, Mr. K. Blonquist and Mr. L. Wright, and made arrangements for emending damages with both parties. He is working with a local contractor and is in the process of cleaning up the spill. The pond will be burned and the remaining liquid and residue trucked to another pit and disposed of. The liquid and polluted soil will be removed from the irrigation system and disposed of in a like manner.

MEMORANDUM Oil Spill - Michigan Wisconsin Well No. Weber Coal #13-3 March 18, 1980

When work is completed, Mr. Neet will notify the Division and the site will be checked at that time and again later in the year to determine successfulness of clean-up operations.

Since there is gas leaking from the well head, the plugging is not adequate and will require that the surface casing be drilled out and plugged properly.

cc: UTAH State Division of Health Environmental Protection Agency Michigan-Wisconsin Pipeline Mr. Donald Neet Michael T. Minder

831 Belinda Circle RIVERTON Wyoming 82501

March 15th 1980

Mr Mike Minder State of Utah Division of Oil, Gas and Minerals 1588 West North Temple SALT LAKE CITY Utah 84116

Hef. Weber Coal 13-3

Division of Oil, gas a mining

Dear Sir

On Friday March 7, 1980 a portion of the South West retaining wall of the Weber Soal \$3-3 Location gave way allowing surface water to escape into the lower Reserve Pit. This was caused by a great deal of heavy wet snow and unusually heavy rains which filled the reserve pit causing approximately 65' of the reserve pit to collapse. The Material in the reserve pit was frozen so that the rain water and melting snow was practically all that escaped.

Also a third reserve pit, which was originally built to gather irrigation water from the adjacent irrigation ditch caught most of the remaining water and some oil from the original pit. However, there was a small amount of this material which got into an irrigation ditch. There was also some damage to a three acre alfalfa field along this irrigation ditch. Two Ranchers' land was involved in this problem. They are Mr Lawrence Wright and Mr Ken Blomquist. I have met with both of these gentlemen and I have agreed to clean Mr Wright's irrigation ditch and to vacuum the water out of his reservoir and clean the reservoir. With regards to Mr Blomquist's alfalfa field we have agreed to reimburse him for any damages incurred.

We have taken a water sample from the second reserve pit, the results were as follows:-

P.H. 8.5 C.L. 2,000 C.A. 320 CHROMATES - None

We will not be able to begin this clean up work for approximately three weeks, in other words, until the surface has dried enough to permit us to move equipment on to the area without causing more damage.

I sincerely hope this letter clarifies our position. If you have any questions please contact me at the above adress or call me at area code 307 - 856 1697.

Yours faithfully

DONALD M NEET

c.c. Mr Gearge Goward (Michigan Wisconsin)

could m net

MICHIGAN WISCONSIN PIPE LINE COMPANY

MEMBER OF THE AMERICAN NATURAL RESOURCES SYSTEM

ENERGY CENTER ONE BUILDING, SUITE 2500 717 SEVENTEENTH STREET, DENVER, COLORADO 80202 (303) 571-1110

April 16, 1980

Mr. Michael T. Minder Division of Oil, Gas & Mining State of Utah 1588 West North Temple Salt Lake City, UT 84116

> Re: Weber Coal Company #13-3 NW氧 SW氧 Sec. 3 T2N, R5E Summit County, UT

Dear Sir,

In response to your memo of March 18,1980 concerning the spill at the above location.

We have received signed agreements settling property damage from both land owners, Mr. Blonquist and Mr. Wright.

Mr. Neet will commence clean up operations in accordance with your memo as soon as weather conditions permit, Mr. Neet will contact the Division office when this work is completed.

On April 12, 1980 Mr. Ray Hopkins representing our company cleaned out the 9-5/8" casing to a depth of 30 feet and reset a 15 sack cement plug to surface. The plug will be inspected at a later date to insure it's integrity. The well status is unchanged as "Temporarily Abandoned" with a bolted steel plate installed on the casing head.

Your cooperation and assistance in the above matter is greatly appreciated.

Sincerely,

12 Yoursel

George Goward Area Engineer

GG/jm

cc: Don Neet

APR 1 8 1980

DIVISION OF OIL, GAS & MINING

	TATE OF UTAH NSERVATION COMMISSIO	SUBMIT IN TRIPLICATE* (Other instructions on reverse side)	5. LEASE DESIGNATION	AND SERIAL NO.		
	OTICES AND REPORTS Opposals to drill or to deepen or plug bandCATION FOR PERMIT—" for such pro		6. IF INDIAN, ALLOTTE	OR TRIBE NAME		
OIL GAS			7. UNIT AGREEMENT NA	EM		
WELL WELL OTHER NAME OF OPERATOR (MICH	Temporarily Abandoned IGAN-WISCONSIN Production Company)	8. FARM OR LEASE NAME Weber Coa 9. WELL NO.	_		
	er. Colorado 80201		13-3			
6. LOCATION OF WELL (Report location See also space 17 below.) At surface	n clearly and in accordance with any S	tate requirements.*	10. FIELD AND FOOL, OR WILDCA			
500' FNL and 1400' F	SL (NW늄 SW늄)		Sec. 3. T2N.			
14. PERMIT NO. 43-043-30024	15. BLEVATIONS (Show whether DF, 1 GL 5987'	RT, GR, etc.)	12. COUNTY OF PARISH Summit	Utan		
6. Check	Appropriate Box To Indicate No	iture of Notice, Report, or C	ther Data			
NOTICE OF IN	TENTION TO:	SUBSEQU	ENT REPORT OF:			
TEST WATER SHUT-OFF	PULL OR ALTER CASING	WATER SHUT-OFF	OFF REFAIRING			
FRACTURE TREAT	MULTIPLE COMPLETE	FRACTURE TREATMENT	ALTERING CA			
SHOOT OR ACIDIZE	ABANDON*	SHOUTING OR ACIDIZING	ABANDONMEN	*T* X		
REPAIR WELL (Other)	CHANGE PLANS	(Other) (NOTE: Report results ('ampletion or Recomple	of multiple completion (etion Report and Log for	on Well		
7. DESCRIBE PROPOSED OR COMPLETED proposed work. If well is dire nent to this work.) *	OPERATIONS (Clearly state all pertinent ctionally drilled give subsurface location	details, and give pertinent dates, ins and measured and true vertica	including estimated date l depths for all markers	e of starting any and zones perti-		

Cleaned out 9-5/8" casing from surface to 30' and reset 15 sack cement plug from 30' to surface on 4/12/80. Installed bolted steel plate on casing head.

Current well status: Temporarily abandoned.

DIVISION OF OIL, GAS & MINING

18. I hereby certify that the foregoing is true and correct SIGNED 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TITLE	Area Engineer	DATE	4/16/80
(This space for Federal or State office use)				
APPROVED BY	TITLE		DATE _	

April 24, 1980

Michigan Wisconsin Pipe Line Company Energy Center One Building, Suite 2500 717 17th Street Denver, Colorado 80202

> Re: Well No. Weber Coal Company #13-3 Sec. 3, T. 2N, R. 5E., Summit County, Utah

Dear Mr. Goward:

This is a reply to your letter of April 16, 1980. You indicated that the 9 5/8" casing had been cleaned out to a depth of 30 feet and recemented to the surface, thus leaving the well temporarily abandoned. This will not be acceptable for final abandonment. You will have to reenter the well bore and place the following plugs:

```
#1 9982' - 9782' 200' plug
#2 8150' - 7950' 200' pplug
#3 6100' - 5900' 200' plug
#4 3100' - 2900' 200' plug
#5 50' - 4urface
```

A 9.5# or greater gel-base abandonment mud will be placed between plugs and a regulation dry hole marker erected. The site must be cleaned, graded and reclaimed.

Please notify this office prior to the plugging of this well, and if we can be of further assistance please feel free to contact me.

Sincerely,

DIVISION OF OIL, GAS AND MINING

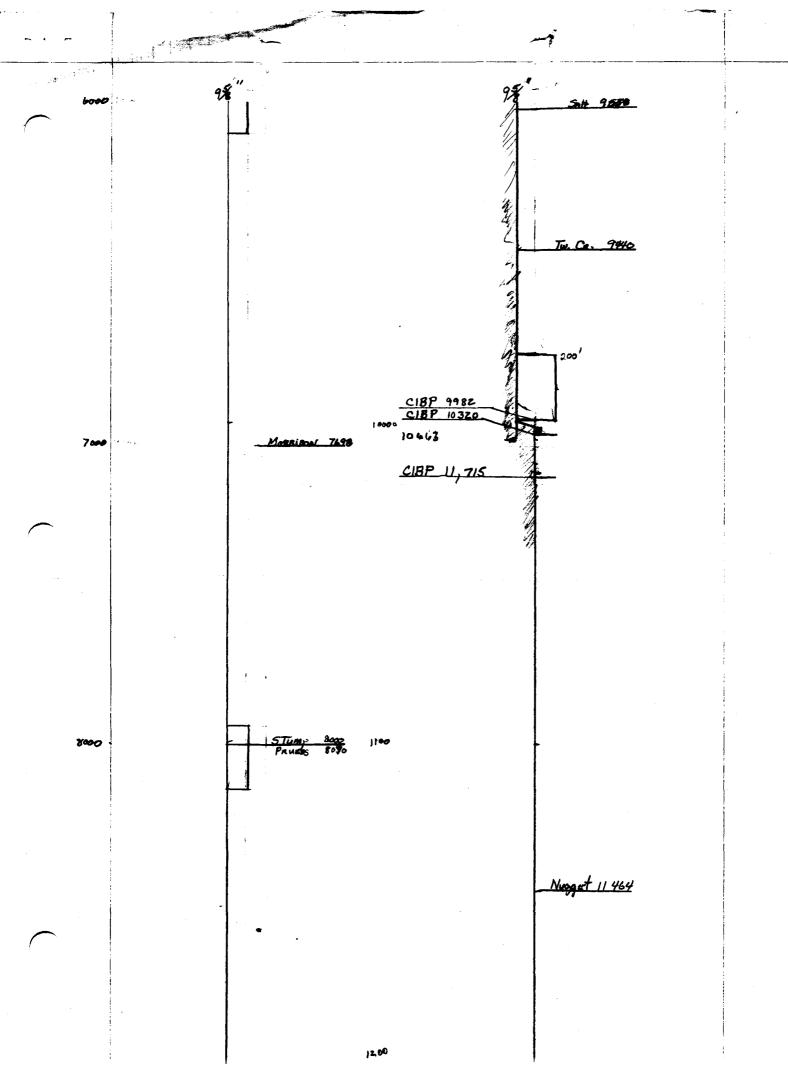
Michael T. Minder Petroleum Engineer

MTM/b.cm

n OG	CC-1 b∙			
	STATE OF UTAH	SUBMIT IN TRIPLICATE® (Other instructions on re-	.	
	OIL & GAS CONSERVATION COMMISSION	manua alda)	5. LEASE DESIGNATION	AND SERIAL NO.
			6. IF INDIAN, ALLOTTE	E OR TRIBE NAME
	SUNDRY NOTICES AND REPORTS ON	1 WELLS	INTA LES	
	(Do not use this form for proposals to drill or to deepen or plug back Use "APPLICATION FOR PERMIT—" for such propo	osals.)	NA 17	
1.	DIL GAN		A. UNIT AGREEMENT NA	MB
	WELL WELL WELL OTHER Dry hole		NA St FARM OR LEASE NAD	
	American Natural Resources Production Compan)	Weber Coal	
8.	AMIETICAL NATULAL RESOUTCES FINDAUCTION COMPAN	iy .	9. WELL NO.	
	<u> 717 17th Street - Suite 2500, Denver, Colora</u>	do 80202 DIVISION	OF 13-3	
4. I	LOCATION OF WELL (Report location clearly and in accordance with any Sta See also space 17 below.)	te requirements.	IMMODE THE LOOK O	R WILDCAT
	At surface	· Oilly Carte	Wildcat	
;	500' FNL and 1400' FSL (NW¼, SW¼)		SURVEY OR AREA	
			Sec. 3, T2N	, R5E
	ERMIT NO. 15. ELEVATIONS (Show whether DF, RT,	, GR, etc.)	12. COUNTY OR PARISH	1
	43-043-30024 GL 5981'		Summit	Utah
16.	Check Appropriate Box To Indicate Natu	ure of Notice, Report, or C	ther Data	
	NOTICE OF INTENTION TO:	SUBSEQU	ENT REPORT OF:	
	TEST WATER SHUT-OFF PULL OR ALTER CASING	WATER SHUT-OFF	REPAIRING V	FELL
	FRACTURE TREAT MULTIPLE COMPLETE	FRACTURE TREATMENT	ALTERING CA	LSING
	SHGOT OR ACIDIZE ABANDON*	SHOOTING OR ACIDIZING	ABANDONME	NT* XX
	REPAIR WELL CHANGE PLANS	(Other)	of multiple completion	on Well
	(Other)	Completion or Recomple	etion Report and Log for	m.)
11. 0	ESCRIBE PROPOSED OR COMPLETED OPERATIONS (Clearly state all pertinent de proposed work. If well is directionally drilled, give subsurface locations nent to this work.)*	s and measured and true vertica	l depths for all markers	and zones perti-
The	subject well was plugged and abandoned as i	follows:		
1.	Displaced hole with a 9.2 ppg fresh water of	gel mud.		
2.	Set 70 sacks Class "G" cement plug 9000'-88	- 300' in 9-5/8" casi:	ng.	
3.	Perforated 5196-5200' with 2 jpf, set cemer			d in and
٠.	out of 9-5/8" casing from 5200' to 5000' wi		, and comerced	i ili alla
4.	Perforated 2996-3000' with 2 jpf, set cemer out of 9-5/8" casing from 3000' to 2800' wi		', and cemented	in and
5.	Set 50' cement surface plug, installed dry Permanently P&A on 7/3/81.	hole marker, and c	leaned up locat	tion.

APPROVED BY THE STATE OF UTAH DIVISION OF OIL, GAS, AND MINING

DATE: 7/30/8/


18. I hereby certify that the foregoing is true and co		7/23/81
SIGNED & Floword	TITLE Area Engineer	DATE
(This space for Federal or State office use)		
APPROVED BY	TITLE	DATE

DIVISION OF OIL, GAS AND MINING

DATE October 30, 1980

PLUGGING PROGRAM

NAYE OF COMPANY: Michigan-Wisconsin I	Pipeline (American Na	tural Gas)		
WELL NAME: Weber Coal Co. 13-3				
SECTION 3 TOWNSHIP 2N	_ RANGE5E C	OUNTY _Summ	it	
VERBAL APPROVAL GIVEN TO PLUG AND ABOUMANNER:	VE REFERRED TO WELL	IN THE FOLL	OWING	
TOTAL DEPTH: 17,954'				
CASING PROGRAM:	FORMATION TOPS:			
13 3/8" @ 3039' - Cement to surface	Lower Oyster Ridge	Surface	Stump	8000'
9 7/8: @ 10,663' TOC 8270'	Coalville	450'	Salt	90587
7 5/8" liner - 9958' to 15,676'	Chalk Creek	700'		
	Aspen	3306 '		
	Kelvin	3530'		
	Morrison	7698'		
PLUGS SET AS FOLLOWS:				
Plugging program previously approved b	y J. Feight to PBTD	- 9982'		
Present: Run in and displace, circula	ite out,			
KCL water with 9.2# or great	er gel			
base fresh water abandonment	mud.			
#1 8500' - 8300', perforate and squee outside, 200' inside	eze 200'			
#2 5200' - 5000' "				
#3 3000' - 2800' "				
Erect regulation dry hole marker, clea	n and restore site.			
			. 1	

